• Title/Summary/Keyword: 2차원 퓨리에 변환

Search Result 9, Processing Time 0.021 seconds

Cover song search based on magnitude and phase of the 2D Fourier transform (이차원 퓨리에 변환의 크기와 위상을 이용한 커버곡 검색)

  • Seo, Jin Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.518-524
    • /
    • 2018
  • The cover song refers to live recordings or reproduced albums. This paper studies two-dimensional Fourier transform as a feature-dimension reduction method to search cover song fast. The two-dimensional Fourier transform is conducive in feature-dimension reduction for cover song search due to musical-key invariance. This paper extends the previous work, which only utilize the magnitude of the Fourier transform, by introducing an invariant from phase based on the assumption that adjacent frames have the same musical-key change. We compare the cover song retrieval accuracy of the Fourier-transform based methods over two datasets. The experimental results show that the addition of the invariant from phase improves the cover song retrieval accuracy over the previous magnitude-only method.

Planar integrated optics for implementation of fractional fourier transform (분수차 퓨리에 변환을 위한 평판집적 광학계 구현)

  • 박선택;김필수;오차환;송석호
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.333-340
    • /
    • 1996
  • We have implemented a planar integrated optics for the fractional Fourier transform (FRT) which has recently been developed as a generalized form of the conventional Fourier transform. FRT optical systems provide versatile tools for analyzing signals and designing hardwares, but require high accuracy and stability in the arrangement of optical components because of their shift-variant characteristic. The planar optical FRT setup composed of free-space optical components integrated on a single glass block makes the FRT of 2-dimensional(2-D) input patterns through the 3-D glass-space. Therefore, taking advantage of the compactness, easy alignment and thermal/mechanical stability, the planar optics can provide a useful approach to realizing an optical fractional correlation system in a practical way. In the experiment, we have obtained accurate FRT results by using the planar integrated optics with 4 different fractional orders of 0.25, 0.5, 0.75, and 1.0.

  • PDF

Strain Analysis using Fourier Transform Grid Method and Its Image Processing (퓨리에 변환 격자법과 화상 처리를 이용한 스트레인 해석)

  • Yang, In-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 1992
  • 진동하는 구조물을 설계할 때에는 그 구조물 중의 Strain이나 응력이 최대가 되는 장소나 시각을 알 필요가 있다. 지금까지의 Strain 해석에는 Strain gauge 등과 같은 접촉법이 많이 이용되고 있다. 더우기, 접촉법으로 대변형 진동을 하는 물체의 Strain을 해석하는 것은 곤란하다. 최근에는 비접촉법으로 Strain 분포를 해석하기 위해 화상처리를 이용한 계측이 행하여지고 있다. 이들의 Strain 분포를 측정하는 광학적인 방법으로는 격자법, Moire법, 홀로 그랩픽 간섭법 등이 있다. 특히 대변형이나 대Strain을 해석하는 데에는 격자법이 많이 이용되고 있는데, 종래의 격자법은 Data를 처리하는 데에 많은 시간과 노력이 소요되고 작업도 매우 복잡하며, Data의 수도 제한이 되어서 구조물의 분포의 해석 정도에 큰 영향을 미치게 된다. 본 논문 에서는 스테레오법을 이용해서 2차원 격자를 붙인 시료표면의 각 점의 3차원 좌표를 계측하고, 또 Fourier 변환 격자법을 적용하여 촬영된 2차원 격자의 화상에서 위상치를 구한다. 그리고 물체의 변형 전후의 대응 관계의 화상에서 3차원 형상과 Strain 분포를 해석하는 방법을 제안한다. 이 방법을 이용하면 진동하는 구조 물의 3차원 변위분포, Strain 분포를 정도 좋게 해석할 수가 있다.

  • PDF

Fast Motion Artifact Correction Using l$_1$-norm (l$_1$-norm을 이용한 움직임 인공물의 고속 보정)

  • Zho, Sang-Young;Kim, Eung-Yeop;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.22-30
    • /
    • 2009
  • Purpose : Patient motion during magnetic resonance (MR) imaging is one of the major problems due to its long scan time. Entropy based post-processing motion correction techniques have been shown to correct motion artifact effectively. One of main limitations of these techniques however is its long processing time. In this study, we propose several methods to reduce this long processing time effectively. Materials and Methods : To reduce the long processing time, we used the separability property of two dimensional Fourier transform (2-D FT). Also, a computationally light metric (sum of all image pixel intensity) was used instead of the entropy criterion. Finally, partial Fourier reconstruction, in particular the projection onto convex set (POCS) method, was combined thereby reducing the size of the data which should be processed and corrected. Results : Time savings of each proposed method are presented with different data size of brain images. In vivo data were processed using the proposed method and showed similar image quality. The total processing time was reduced to 15% in two dimensional images and 30% in the three dimensional images. Conclusion : The proposed methods can be useful in reducing image motion artifacts when only post-processing motion correction algorithms are available. The proposed methods can also be combined with parallel imaging technique to further reduce the processing times.

  • PDF

Performance Improvement for 2-D Scattering Center Extraction and ISAR Image Formation for a Target in Radar Target Recognition (레이다 표적 인식에서 표적에 대한 2차원 산란점 추출 및 ISAR 영상 형성에 대한 성능 개선)

  • Shin, Seung-Yong;Lim, Ho;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.984-996
    • /
    • 2007
  • This paper presents techniques of 2-D scattering center extraction and 2-B ISAR(Inverse SAR) image formation for scattering wave which is scattered by a target. In general, 2-D IFFT is widely used to obtain 2-D scattering center and ISAR image of targets. But, this method has drawbacks, that is poor in a resolution aspect. To overcome these shortcomings with the FT(Fourier Transform)-based method, various techniques of high resolution signal processing were developed. In this paper, algorithms of 2-D scattering center extraction and ISAR image formation such as 2-D MEMP(Matrix Enhancement and Matrix Pencil), 2-D ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) are described. In order to show the performances of each algorithm, we use scattering wave of the ideal point scatterers and F-18 aircraft to estimate 2-D scattering center and abtain 2-D ISAR image.

The Efficient Eye Image Check Algorithm for The Robust Iris Recognition System (강인한 홍채 인식 시스템을 위한 효율적인 눈 영상 검사 알고리즘)

  • 장자인;김귀주;손진호;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.328-330
    • /
    • 2003
  • 홍채 인식 시스템의 성능향상을 위해서는 전처리 단계에서 위조된 데이터나 잡음이 섞인 데이터를 걸러내는 과정이 매우 중요하다. 이 논문에서는, 강인한 홍채 인식 시스템을 위해서 두 단계로 이루어진 눈 영상 검사 알고리즘을 제안한다. 알고리즘의 첫 번째 단계에서는 동공 반지름과 눈꺼풀 움직임 변화량의 상관계수(coefficient)와 2차원 고속 퓨리에 변환(Fast Fourier Transform) 스펙트럼을 이용해 위조된 데이터를 찾아낸다. 두 번째 단계에서는 눈 영상에 눈 깜박임이나 속눈썹의 홍채영역 침범, 홍채 영상이 부분적으로 잘렸을 경우 등의 시스템의 성능저하의 원인이 되는 부적절한 데이터를 찾아낸다. 111영의 1734개의 눈 영상을 대상으로 실험한 결과, 제안된 알고리즘의 성공률은 96.5%였고 이러한 전처리 과정을 통해서 전체적인 시스템의 정확률을 향상시킬 수 있다.

  • PDF

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope (콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구)

  • Byung Gon Chae;Jae Yong Song;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.405-419
    • /
    • 2002
  • Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.

SH Wave Scattering from Cracks: Comparisons of Approximate and Exact Solutions (SH파의 균열 산란장 해석: 근사해와 엄밀해의 비교)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Song, Sung-Jin;Schmerr, L.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.354-361
    • /
    • 2004
  • This Paper describes a crack scattering model for SH wave based on the boundary integral equation(BIE) method, where the fundamental unknown is crack opening displacement(COD). When a time harmonic plane wave was incident on a 2-D isolated crack (slit) of width 2a, the COD distributions were numerically calculated as a function of ka. The calculated COD agreed well with results obtained with other methods. The far-field scattering amplitude, which completely characterizes the flaw response, was calculated in two ways. The Kirchhoff approximation and the BIE-COD exact formulation were compared in terms of incidence angle and frequency ka in a pulse-echo mode. Maximum response was obtained for both methods at the specular reflection direction. Away from the specular direction, the Kirchhoff approximation becomes less accurate. The time domain crack response was also calculated using a band-limited spectrum of center frequency 10 MHz. At oblique incidence to the crack both methods show the existence of an antisymmetric flash points occurring from the crack edge. The Kirchhoff approximation provides an exact time interval between flash points, although it unrealistically gives the same amplitude.

The Development of Signal Processing Software for Single-and Multi-Voxel MR Spectroscopy (단위용적 및 다용적 기법 자기공명분광 신호처리 분석 소프트웨어의 개발)

  • Paik, Moon-Young;Lee, Hyun-Yong;Shin, Oun-Jae;Eun, Choong-Ki;Mu, Chi-Woong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.544-555
    • /
    • 2002
  • The aim of this study is to develop the $^1H$-MRS data postprocessing software for both single-voxel and multi-voxel technique, which plays and important role as a diagnostic tool in clinical field. This software is based on graphical user interface(GUI) under windows operating system of personal computer(PC). In case of single-voxel MRS, both of raw data in time-domain and spectrum data in frequency-domain are simultaneously displayed in a screen. Several functions such as DC correction, zero filling, line broadening, Lorentz-Gauss filtering and phase correction, etc. are included to increase the quality of spectrum data. In case of multi-voxel analysis, spectroscopic image reconstructed by 3-D FFT was displayed as a spectral grid and overlapped over previously obtained T1- or T2-weighted image for the spectra to be spatially registered with the image. The analysis of MRS peaks were performed by obtaining the ratio of peak area. In single-voxel method, statistically processed peak-area ratios of MRS data obtained from normal human brain are presented. Using multi-voxel method, MR spectroscopic image and metabolite image acquired from brain tumor are demonstrated.