• Title/Summary/Keyword: 2차원 계산

Search Result 2,108, Processing Time 0.031 seconds

Evaluation of Factors Used in AAPM TG-43 Formalism Using Segmented Sources Integration Method and Monte Carlo Simulation: Implementation of microSelectron HDR Ir-192 Source (미소선원 적분법과 몬테칼로 방법을 이용한 AAPM TG-43 선량계산 인자 평가: microSelectron HDR Ir-192 선원에 대한 적용)

  • Ahn, Woo-Sang;Jang, Won-Woo;Park, Sung-Ho;Jung, Sang-Hoon;Cho, Woon-Kap;Kim, Young-Seok;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.190-197
    • /
    • 2011
  • Currently, the dose distribution calculation used by commercial treatment planning systems (TPSs) for high-dose rate (HDR) brachytherapy is derived from point and line source approximation method recommended by AAPM Task Group 43 (TG-43). However, the study of Monte Carlo (MC) simulation is required in order to assess the accuracy of dose calculation around three-dimensional Ir-192 source. In this study, geometry factor was calculated using segmented sources integration method by dividing microSelectron HDR Ir-192 source into smaller parts. The Monte Carlo code (MCNPX 2.5.0) was used to calculate the dose rate $\dot{D}(r,\theta)$ at a point ($r,\theta$) away from a HDR Ir-192 source in spherical water phantom with 30 cm diameter. Finally, anisotropy function and radial dose function were calculated from obtained results. The obtained geometry factor was compared with that calculated from line source approximation. Similarly, obtained anisotropy function and radial dose function were compared with those derived from MCPT results by Williamson. The geometry factor calculated from segmented sources integration method and line source approximation was within 0.2% for $r{\geq}0.5$ cm and 1.33% for r=0.1 cm, respectively. The relative-root mean square error (R-RMSE) of anisotropy function obtained by this study and Williamson was 2.33% for r=0.25 cm and within 1% for r>0.5 cm, respectively. The R-RMSE of radial dose function was 0.46% at radial distance from 0.1 to 14.0 cm. The geometry factor acquired from segmented sources integration method and line source approximation was in good agreement for $r{\geq}0.1$ cm. However, application of segmented sources integration method seems to be valid, since this method using three-dimensional Ir-192 source provides more realistic geometry factor. The anisotropy function and radial dose function estimated from MCNPX in this study and MCPT by Williamson are in good agreement within uncertainty of Monte Carlo codes except at radial distance of r=0.25 cm. It is expected that Monte Carlo code used in this study could be applied to other sources utilized for brachytherapy.

A Three-dimensional Spectral Model for the Computation of Wind-induced Flows in a Homogeneous Shelf Sea (취송류 재현을 위한 3차원 스펙트랄모형 개발)

  • So, Jae-Kwi;Jung, Kyung-Tae;Lee, Kwang-Soo;Seung, Young-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.91-107
    • /
    • 1992
  • A numerical formulation is developed to solve the linear three-dimensional hydrodynamic equations which describes wind induced flows in a homogeneous shelf sea. The hydmdynamic equations are at the outset separated into two systems. namely, an equation containing the gradient of sea surface elevation and the mean flow (external mode) and an equation describing the deviation from the mean flow (internal mode). The Galerkin method is then applied to the internal mode equation. The eigenvalues are determined from the eigenvalue problem involving the vertical eddy viscosity subject to a homogeneous boundary condition at the surface and a sheared boundary condition at the sea bed. The model is tested in a one-dimensional channel with uniform depth under a steady, uniform wind. The analytical velocity profile by Cooper and Pearce (1977) using a constant vertical eddy viscosity in channels of infinite and finite length is chosen as a benchmark solution. The model is also tested in a homogeneous, rectangular basin with constant depth under a steady, uniform wind field (the Heaps' Basin of the North Sea scale).

  • PDF

Numerical Analysis of Two-Dimensional Nonlinear Radiation Problem Using Higher-Order Boundary Element Method (고차경계요소법을 이용한 2차원 비선형 방사문제의 수치해석)

  • Hong-G. Sung;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An accurate and efficient numerical method for two-dimensional nonlinear radiation problem has been developed. The wave motion due to a moving body is described by the assumption of ideal fluid flow, and the governing Laplace equation can be effectively solved by the higher-order boundary element method with the help of the GMRES (Generalized Minimal RESidual) algorithm. The intersection or corner problem is resolved by utilizing the so-called discontinuous elements. The implicit trapezoidal rule is used in updating solutions at new time steps by considering stability and accuracy. Traveling waves caused by the oscillating body are absorbed downstream by the damping zone technique. It is demonstrated that the present method for time marching and radiation condition works efficiently for nonlinear radiation problem. To avoid the numerical instability enhanced by the local gathering of grid points, the regriding technique is employed so that all the grids on the free surface may be distributed with an equal distance. This makes it possible to reduce time interval and improve numerical stability. Special attention is paid to the local flow around the body during time integration. The nonlinear radiation force is calculated by the "acceleration potential technique". Present results show good agreement with other numerical computations and experiments.

  • PDF

On the Vibration Control of Ship (선박진동 제어기술에 관한 소고)

  • 이호섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.11-21
    • /
    • 1996
  • 선박은 화물 및 여객을 수송하는 해상교통 수단으로써 여객 및 승무원의 안락성, 탑재장비, 기기의 성능 보전 상, 화물 및 구조부재의 안전성 차원에서 진동제어가 주요 해결 기술의 하나이다. 또한 최근 선박의 대형화, 고속화로 인해 엔진과 프로펠러의 기진력은 커지는데 반해 구조 강도계산 기술의 발달로 인해 선체구조 경량화가 촉진되어 선체의 유연성이 커질 뿐 아니라 전통적인 선체 구조와 기관, 축계 강성사이의 균형이 깨어짐으로 선박의 진동제어는 더욱 중요시 되고 있다. 선박의 경우 건조 후에 진동제어를 위한 조치를 취하는 일은 매우 제한적이고 많은 비용이 들기 때문에 설계단게에서 선박진동제어를 위한 사전 노력이 충분히 이루어지는 것이 중요하다. 따라서 선박의 주 기진원인 프로펠러, 주기관 등의 기진력 자체를 적정화하는 노력과 함께 그로 인한 응답을 극소화하기 위해 설계 단계부터 인도까지 단게별로 많은 노력을 기울이고 있다. 단계별 진동제어의 한 예를 Fig.1에서 보여주고 있다[1]. 선체와 같이 복잡한 대형구조물의 진동특성 및 응답을 계산함에 있어서 컴퓨터의 발달과 유한요소법과 같은 해석기술의 발달로 실제 구조와 매우 유사한 3차원 모델링이 가능하게 되어 해석의 정도를 높일 수 있게 되었다. 그러나 프로펠러 기진력, 유체와의 연성효과, 감쇠특성 등을 정도 높게 산정하는 데는 아직도 많은 어려움이 있다. 이와같은 문제는 진동응답의 계산정도를 저하시키는 주요 요인이 되어 설게단계에서 충분히 진동 제어가 이루어졌다 하더라도 건조 후 실제운항 시 진동문제가 발생되는 경우가 있다. 건조 후 진동문제 발생시 구조변경을 통한 해결은 한계가 있기 때문에 각종 진동제어 장치의 연구개발이 최근에 활발히 이루어지고 있다[2]. 본 고에서는 설계단계에서부터 건조 후까지의 선박진동제어 과정[1,2,5,6]을 단계별로 고찰하여, 점점 까다로워져 가는 선박 진동규제[3,4]에 대처하고 승무원의 안락성에 대한 욕구, 구조물의 안전성, 장비의 성능보존이 만족되는 저진동 선박의 건조를 위해 향후 해결해야할 과제들을 도출하여 선박진동분야이 연구개발 방향을 제시하고자 한다.

  • PDF

Numerical Simulation of Wave Deformation due to a Submerged Structure with a Second-order VOF Method (2차 정확도 VOF기법을 활용한 수중구조물에 의한 파랑변화 예측)

  • Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • A three-dimensional numerical model is employed to investigate wave deformation due to a submerged structure. The three-dimensional numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES(large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS(sub-grid scale) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF(volume-of-fluid) method is used to track the distorted and broken free surface. A simple linear wave is generated on a constant depth and compared with analytical solutions. The model is then applied to study wave deformation due to a submerged structure and the predicted results are compared with available laboratory measurements.

Effect of Racetrack Pit Depth and Bulk Stress on Far and Near-side Magnetic Flux Leakage at Ferromagnetic Pipeline (강자성 배관 외.내부 벽의 racetrack형 결함깊이와 부피응력이 누설자속에 미치는 영향)

  • Ryu, K.S.;Park, Y.T.;Son, D.;Atherton, D.L.;Clapham, L.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Non-linear anisotropic materials were used to simulate the effects of bulk tensile stress in 3D finite element analysis (FEA). FEA was used to calculate the effects of near and far-side racetrack pit depth and simulated bulk tensile stress on magnetic flux leakage (MFL) signals. The axial and radial MFL signals were depended on near and far-side racetrack pit depth and on the bulk stress, but the circumferential MFL signal was not depended on them. The axial and radial MFL signals increased with greater pit depth and applied bulk stress, but the circumferential MFL signal was scarcely changed.

A Study on Gaze Tracking Based on Pupil Movement, Corneal Specular Reflections and Kalman Filter (동공 움직임, 각막 반사광 및 Kalman Filter 기반 시선 추적에 관한 연구)

  • Park, Kang-Ryoung;Ko, You-Jin;Lee, Eui-Chul
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.203-214
    • /
    • 2009
  • In this paper, we could simply compute the user's gaze position based on 2D relations between the pupil center and four corneal specular reflections formed by four IR-illuminators attached on each corner of a monitor, without considering the complex 3D relations among the camera, the monitor, and the pupil coordinates. Therefore, the objectives of our paper are to detect the pupil center and four corneal specular reflections exactly and to compensate for error factors which affect the gaze accuracy. In our method, we compensated for the kappa error between the calculated gaze position through the pupil center and actual gaze vector. We performed one time user calibration to compensate when the system started. Also, we robustly detected four corneal specular reflections that were important to calculate gaze position based on Kalman filter irrespective of the abrupt change of eye movement. Experimental results showed that the gaze detection error was about 1.0 degrees though there was the abrupt change of eye movement.

Gesture Spotting by Web-Camera in Arbitrary Two Positions and Fuzzy Garbage Model (임의 두 지점의 웹 카메라와 퍼지 가비지 모델을 이용한 사용자의 의미 있는 동작 검출)

  • Yang, Seung-Eun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.127-136
    • /
    • 2012
  • Many research of hand gesture recognition based on vision system have been conducted which enable user operate various electronic devices more easily. 3D position calculation and meaningful gesture classification from similar gestures should be executed to recognize hand gesture accurately. A simple and cost effective method of 3D position calculation and gesture spotting (a task to recognize meaningful gesture from other similar meaningless gestures) is described in this paper. 3D position is achieved by calculation of two cameras relative position through pan/tilt module and a marker regardless with the placed position. Fuzzy garbage model is proposed to provide a variable reference value to decide whether the user gesture is the command gesture or not. The reference is achieved from fuzzy command gesture model and fuzzy garbage model which returns the score that shows the degree of belonging to command gesture and garbage gesture respectively. Two-stage user adaptation is proposed that off-line (batch) adaptation for inter-personal difference and on-line (incremental) adaptation for intra-difference to enhance the performance. Experiment is conducted for 5 different users. The recognition rate of command (discriminate command gesture) is more than 95% when only one command like meaningless gesture exists and more than 85% when the command is mixed with many other similar gestures.

Boundary Element Analysis for Diffraction of Water Waves with Vertical Cylinders (연직 해양구조물로 인한 파랑회절의 경계요소 해석)

  • 김성득;이성대;박종배
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 1989
  • A numerical analysis of the wave characteristics of wave diffraction and the interference effects for a single cylinder and for two cylinders were carried out by the Boundary Element Method using constant elements. The Present investigation was limited to the diffraction of 2-dimensional linear waves by vertical impervious cylinders. Numerical model has been written to calculate the wave diffraction coefficient both on the boundary of the cylinders and at points away from it. The accuracy of the computational scheme was investigated by comparing the analytical results of the other reseraches. Good agreement was observed.

  • PDF

A Study on the Reactivity Effect due to Expansion of Diagrid and Pad (Diagram와 Pad의 팽창에 의한 반응도 효과에 대한 연구)

  • Young In Kim;Keun Bae Oh;Kun Jong Yoo;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.70-79
    • /
    • 1984
  • With the help of the nuclear computational system for a large LMFBR (KAERI-26 group cross section library/1DX/2DB), the reactivity coefficients for the diagrid expansion and the pad expansion at the beginning of cycle of the equilibrium core of SUPER-PHENIX I are calculated and reviewed. the core is described using R-Z geometry model, and a two-dimensional multigroup diffusion theory is used. For reference cases, reactivity calculations for radial and axial uniform expansion are performed, and also calculated are reactivity variations due to changes in material density and core volume. The reactivity coefficient for the diagrid expansion is calculated to be -0.553pcm/mil. The temperature coefficient corresponding to the above value is -1.0766pcm/$^{\circ}C$ and is well in accord with the French datum of -1.09pcm/$^{\circ}C$ within 1.2% difference. With the use of 4he calculational method for the diagrid expansion effect, reactivity calculations for the pad expansion bringing about nonuniform expansion are performed, which show that the calculational method is very useful in the analysis of the pad expansion effect. The reactivity coefficients for the pad expansion are calculated to be -0.2743 pcm/mil and -0.2786pcm1mi1 for the averaged expansion model and for the integrated pancake model, respectively. Under the assumption of the free expanding core the temperature reactivity coefficients for each model are obtained to be -0.5766pcm/$^{\circ}C$ and -0.5858pcm/$^{\circ}C$, both of which agree with the French datum of -0.574pcm/$^{\circ}C$ within 2% difference.

  • PDF