• Title/Summary/Keyword: 2유체 분무

Search Result 95, Processing Time 0.025 seconds

내연기관 연소 및 pollutant 모델링 (Modeling of Combustion and Pollutant Emissions in IC Engines)

  • 허강열
    • 한국가시화정보학회지
    • /
    • 제3권2호
    • /
    • pp.14-20
    • /
    • 2005
  • 내연기관 연소는 난류유동, 분무, 연소, 열전달의 복합적인 현상으로서 열역학적 해석이 주류를 이루어 왔으나 컴퓨터의 발전에 따라 효율 개선과 공해 저감을 목표로 전산유체해석 기법이 적극적으로 도입되고 있다. 내연 기관 연소의 근간을 형성하는 난류 연소 모델링의 기본 개념으로서 가솔린엔진에서의 예혼합연소와 디젤엔진에서의 확산연소에 대한 영역조건평균(zone conditional averaging) 모델과 조건평균닫힘(conditional moment closure) 모델에 대해 설명하였으며 $NO_x$와 soot 예측에 대한 적용과 엔진응용 사례를 소개하였다.

  • PDF

불안정 이론을 이용한 2유체 노즐에서의 분무입경 예측 (Prediction of Mean Diameters Based on the Instability Theory for Twin Fluid Nozzle)

  • 김관태;안국영;김한석
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.47-54
    • /
    • 1995
  • The atomizing characteristics in a spray injected from a twin fluid atomization nozzle have been investigated. The Sauter mean diameters as mean diameter are compared with wavelength calculated from the instability theory. The Sauter mean diameter are measured by the Fraunhofer diffraction theory using the Malvern particle sizer. The wavelength is calculated using the mean relative velocity instead of the exit relative velocity of nozzle. Also shadowgraphy technique is used to visualize atomization. This paper gives a possibility that the mean diameter can be predicted with the wavelength obtained by the simple instability theory.

  • PDF

분무연소합성(SCS)법에 의한 나노크기 물라이트(3Al2O3.42SiO2) 콜로이드 제조 (Nano-Sized Mullite(3Al2O3.42SiO2) Colloids Fabricated by Spray Combustion Synthesis (SCS) Technique)

  • 이상진;전병세
    • 한국세라믹학회지
    • /
    • 제41권4호
    • /
    • pp.297-301
    • /
    • 2004
  • 분무연소합성법을 이용하여 나노크기의 물라이트(3Al$_2$O$_3$$.$2SiO$_2$) 콜로이드를 제조하였다. 연소반응을 위한 산화제로서 Al(NO$_3$)$_3$$.$9$H_2O$와 환원제(연료)로서 CH$_{6}$N$_4$O를 사용하였으며, 실리카 소스로서 콜로이드 실리카를 첨가하였다. 분무된 액적들의 착화를 위해 연소반응기의 온도를 80$0^{\circ}C$로 유지하였다. 액적의 응고에 의한 액적크기 성장을 억제하기 위하여 금속 스크린 필터를 사용함으로써 액적의 개수 농도를 감소시켰으며, 에어로졸 입자의 체류시간을 2.5초로 유지하여 열 유체의 흐름을 층류로 유도하였다. 제조된 입자들의 모양은 모두 구형이었으며, 평균입자크기는 130nm이었다 XRD와 TEM 분석 결과 각각의 초미립자들은 정량화합물의 물라이트 결정성을 나타내었다.

저압 TBI용 분사밸브의 분무특성에 관한 연구 (I) (Study on the Spray Characteristics in TBI Injector with Low Pressure)

  • 전흥신;임종한;이택희
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3179-3186
    • /
    • 1993
  • The study on the spray characteristics of TBI(Throttle Body Injection) injector has been carried out in this paper. The objective of this study is to improve the performance of TBI injector. The increase in the injection pressure and the utilization of assisted air are considered. The spray patten of TBI injector take the hollow-cone shape with $60^{\circ}~70^{\circ}$ spray angle regardless of injection pressure and injection pulse width. SAMD(Sauter Mean Diameter) of water in TBI injector are 510-$550{\mu}m$ and 310-$370{\mu}m$ respectively when injection pressures are $0.75 kgf/cm^{2}$ and $2.8 kgf/cm^{2}$. Then SMD of gasoline is estimated 380~$410{\mu}m$ and 230~$280{\mu}m$ respectively. The improvement of spray characteristics in TBI injector can be obtained with assisted air. If $W_{A}/W_{L}$ was over 0.2, SMD of water can be made under $50{\mu}m$.

액적 체적이 증발 특성에 미치는 영향에 관한 수치해석 연구 (Effect of the Droplet Volume on the Evaporative Characteristics of Sessile Droplet)

  • 정찬호;이형주;김홍석;이성혁
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to investigate the influence of the droplet volume on the evaporation characteristics of the sessile droplet. In particular, the effect of the free convection in the vapor domain on the evaporation rate was analyzed through the numerical simulation. The commercial code of the ANSYS Fluent (V.2020 R2) was used to simulate the heat transfer in the liquid-vapor domain. Moreover, we used the diffusion model to estimate the evaporation rate for the different droplet volume under the room temperature. It was found that the evaporation rate significantly increases with the droplet volume because of the larger surface area for the mass transfer. Also, the effect of free convection on the evaporation rate becomes significant with an increment of droplet volume owing to the increase in the droplet radius corresponding to the characteristic length of the free convection.

복합발전플랜트 내의 가스 화재 거동에 관한 수치해석 (Numerical Study of Fire Behavior Induced by Gas Leakage in Combined Cycle Power Plant)

  • 박재용;성건혁;이용남;최진욱;김대중;이성혁;유홍선
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.107-113
    • /
    • 2015
  • To date, the demand for Combined Cycle Power Plant (CCPP) has been continuously increased to overcome the problem of air pollution and lack of energy. In particular, the underground CCPP is exposed to substantial fire and explosion risks induced by gas leakage. The present study conducted numerical simulations to examine the fire behavior and gas leakage characteristics for a restricted region including gas turbine and other components used in a typical CCPP system. The commercial code of FLUENT V.14 was used for simulation. From the results, it was found that flammable limit distribution of leakage gas affects fire behavior. Especially, the flame is propagated in an instant in restricted region with LNG gas. In addition, consequence analysis factors such as critical temperature and radiation heat flux are introduced. These results would be useful in making the safety guidelines for the underground CCPP.

CFD를 이용한 승용차 에어컨 덕트의 최적설계 (Optimum Design of an Automotive A/C Duct using by CFD)

  • 김태훈;정수진
    • 한국분무공학회지
    • /
    • 제1권3호
    • /
    • pp.37-50
    • /
    • 1996
  • Computational fluid dynamics was used to optimize an A/C duct. Three dimensional flow analysis in an automotive A/C duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. Additionally, we studied the effect of location variation of 2nd branch on exit flow ratio and could find optimal location of 2nd branch. The design of an A/C duct was modeled and calculated to enhance the airflow distribution in each outlet using the STAR-CD computational fluid dynamics software. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the future, adoption of CFD to design an A/C duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

입자 영상 처리 시스템을 이용한 콜로이드 입자의 제타포텐셜 측정 및 나노유체 분산 특성 연구 (A Study on the Zeta Potential Measurement and the Stability Analysis of Nano Fluids using a Particle Image Processing System)

  • 이재근;김성찬;김희중;이창건;주찬홍;이래철
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.16-22
    • /
    • 2003
  • Zeta potential measurements of colloid particles suspended in a liquid are performed by a Zeta Meter developed. There are many applications of colloid stability in spray technology, paints, wastewater treatment, and pharmaceuticalse. Zeta potentials of charged particles are obtained by measuring the electrophoretic velocities of the particles using video enhanced microscopy and image analysis program. The values of zeta potential of polystyrene latex(PSL), $silica(SiO_2)$M, polyvinylidence difluoride(PVDF), silicon nitride, and alumina particles in deionized (DI) water were measured to be -40.5, -31.9, -25.2, -15.1 and -10.1mV, respectively. The particles having high zeta potential less than -20 mV are stable in DI water, because the double layers of them have strong repulsive forces mutually, and the particles having low zeta potential over -20mV are unstable due to Van Der Waals forces. Silica(>20nm), PSL, aluminum and PVDF particles were found to be stable that would remain separate and well disperse, while silicon nitride and alumina particles were found to be unstable that would gradually agglomerate in DI water.

  • PDF

미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석 (Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber)

  • 수먼;이상욱
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구 (A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine)

  • 김경배;송미지;김구성;강석호;이영훈;이성욱
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.