• Title/Summary/Keyword: 2에틸1헥산올

Search Result 2, Processing Time 0.019 seconds

Concentration of 2-Ethyl Hexanol Using an Energy-Efficient Distillation Column (에너지 절약형 증류탑을 이용한 2-에틸헥산올의 농축)

  • Kim, Dae-Hwan;Park, Jung-Woo;Kim, Young-Han
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.59-63
    • /
    • 2010
  • The concentration process of 2-ethyl hexanol used for the intermediate material in the production of plasticizer is examined for the energy conservation of energy-efficient distillation system instead of the conventional two column system through numerical simulation. Some 41 % of energy conservation is expected from the proposed system, and its conservation principle is explained with column profiles. In addition, not only the operating cost but also investment cost can be reduced for the additional benefit of the column application when the thermally coupled distillation is implemented.

An Experimental Study on Falling Film Heat and Mass Transfer for Binary Nanofluids ($H_2O$/LiBr+Nanoparticles) (이성분 나노유체($H_2O$/LiBr+나노입자)를 적용한 유하박막 흡수기의 열 및 물질전달 촉진 실험)

  • Kim, Hyun-Dae;Kim, Sung-Su;Nam, Sang-Chul;Jeong, Jin-Hee;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.130-135
    • /
    • 2008
  • The objectives of this study are to investigate the combined heat and mass transfer enhancement using binary nanofluids as the working fluids in a $H_2O$/LiBr absorber. The result of heat and mass transfer experiment with the additives(Arabicgum, 2E1H) showed that the heat and mass transfer performance of binary nanofluid with 2E1H enhanced significantly in comparison with that without additive. In the case of 0.01wt% $Al_2O_3$ binary nanofluids with 2E1H, the vapor absorption rate increased up to 77% in comparison with that without additive. The heat transfer rate of 0.01wt% $Al_2O_3$ binary nanofluids with 2E1H increased up to 19%. Based on the experimental results, it is recommended that the $Al_2O_3$ binary nanofluid be good with 2E1H to improve the heat and mass transfer performance.

  • PDF