• Title/Summary/Keyword: 2단 액추에이터

Search Result 2, Processing Time 0.015 seconds

Interaction Analysis of Dual-stage System during Seek Motion and Control for Track Pull-in Enhancement (탐색 과정시 2단 액추에이터의 상호 작용 분석 및 트랙 끌어들임 성능 향상을 위한 제어)

  • Lee, Kwang-Hyun;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil;Choi, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1276-1286
    • /
    • 2005
  • In this paper, the dual stage interaction between the coarse actuator and the fine actuator of an optical disk drive is studied, and the new control method to enhance the track pull-in performance using fine actuator control is proposed. First, the dynamic analysis for the dual stage and the experiments to find the each actuator dynamics are performed. From the experiments, some physical parameters of the actuators were derived, then, some simulations are performed to find the interaction effect of the fine actuator during seek motion. Second, the center servo which suppresses the vibration of fine actuator during seek motion is designed and evaluated. And the fine actuator control to reduce the relative velocity between the target track and beam spot is proposed. From simulations, we show that fine actuator control which has same frequency and same phase of the disturbance is effective to reduce the relative velocity, and this result leads to track pull-in enhancement. Hence, the proposed control method is good approach to improve the track pull-in performance. Finally, the realization of the proposed method and some comments of it are briefly discussed.

Dynamic Characteristic Analysis and Position Control for High Density Optical Head Using Bimorph PZT (고밀도 광학헤드를 위한 Bimorph 압전 액추에이터의 동특성 해석 및 위치제어)

  • Park, Tae-Wook;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Kwon, Young-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.12-19
    • /
    • 2005
  • This paper proposed a dual actuator using Bimorph PZT for information storage device based on prove array NSOM(near-field scanning optical microscopy). The gap between the media and the optical head should be maintained within the optical tolerance. Therefore, a new actuator having high sensitivity is required. Bimorph PZT, which has fast access time and high sensitivity characteristic, is suitable for this precise actuating system. This paper is focused on derivation of mathematical model of dual Bimorph PZT actuator and control algorithm. Hamilton's principle was used for mathematical model. The model is verified by FEA(finite element analysis), and compared with experimental results. Different control algorithms were used for two Bimorph PZT actuating same direction and opposite direction. The gap between recording media and optical head was controlled within 20nm in experiment.