본 논문은 형태소 분석 및 품사 태깅을 위해 seq2seq 주의집중 모델을 이용하는 접근 방법에 대하여 기술한다. seq2seq 모델은 인코더와 디코더로 분할되어 있고, 일반적으로 RNN(recurrent neural network)를 기반으로 한다. 형태소 분석 및 품사 태깅을 위해 seq2seq 모델의 학습 단계에서 음절 시퀀스는 인코더의 입력으로, 각 음절에 해당하는 품사 태깅 시퀀스는 디코더의 출력으로 사용된다. 여기서 음절 시퀀스와 품사 태깅 시퀀스의 대응관계는 주의집중(attention) 모델을 통해 접근하게 된다. 본 연구는 사전 정보나 자질 정보와 같은 추가적 리소스를 배제한 end-to-end 접근 방법의 실험 결과를 제시한다. 또한, 디코딩 단계에서 빔(beam) 서치와 같은 추가적 프로세스를 배제하는 접근 방법을 취한다.
본 논문은 형태소 분석 및 품사 태깅을 위해 seq2seq 주의집중 모델을 이용하는 접근 방법에 대하여 기술한다. seq2seq 모델은 인코더와 디코더로 분할되어 있고, 일반적으로 RNN(recurrent neural network)를 기반으로 한다. 형태소 분석 및 품사 태깅을 위해 seq2seq 모델의 학습 단계에서 음절 시퀀스는 인코더의 입력으로, 각 음절에 해당하는 품사 태깅 시퀀스는 디코더의 출력으로 사용된다. 여기서 음절 시퀀스와 품사 태깅 시퀀스의 대응관계는 주의집중(attention) 모델을 통해 접근하게 된다. 본 연구는 사전 정보나 자질 정보와 같은 추가적 리소스를 배제한 end-to-end 접근 방법의 실험 결과를 제시한다. 또한, 디코딩 단계에서 빔(beam) 서치와 같은 추가적 프로세스를 배제하는 접근 방법을 취한다.
본 논문은 LR 파싱기법을 이용한 확장된 두단계(two-level)형태소분석 모델을 제시한다.LA기법을 이용한 두단계 모델은 효율적 형태소분석 뿐만 아니라 Koskenniemi(1983)의 모델보다 형태론적 현상에 대한 보다 높은 기술성(descriptive adequacy)을 획득한다.이를 위해 두단계 모델은 자질기반의 문맥자유문법(feature-based CF grammar)에 근거한 독립적인 형태/통사모듈에 의해 확장된다.문맥자유문법에 근거한 단어문법(word grammar)을 채택함으로써 확장 모델은 하위사전의 중복현상을 피하면서 비연속적 의존관계(discontinuous dependencies) 를 가지는 복합어 등을 처리할 수 있다.또한 파싱테이블에 명시된 LR 예측은 형태소분석기로 하여금 사전탐색시간을 줄일 수 있도록 도와준다.
본 논문은 실용적인 한국어 형태소 분석기 개발에 사용될 수 있는 도구인 MADE를 소개한다. MADE는 형태소 사전에서 제공되는 인접 조건만을 사용하여 형태소 분석을 수행한다. 이것은 형태소 분석기를 개발하기 위해 별도의 프로그래밍은 전혀 하지 않고 단지 형태소 사전만 구축하면 된다는 것을 의미한다. MADE는 형태소 사전을 구축하고 검증하는데 필요한 기능들을 제공한다. 일단 형태소 사전이 구축되고 나면 MADE는 독립된 형태소 분석기로서 사용될 수도 있고 형태소 분석기를 필요로 하는 다른 응용 소프트웨어에 내장되어 사용될 수도 있다.
본 논문은 한국어 형태소 분할 및 품사 태깅을 위해 조건부 랜덤 필드 (CRF: conditional random field)에 기반한 방식을 제안한다. 제안 방법은 1) 형태소 분할 단계 2) 품사 태깅 단계 3) 복합형태소 분할 및 태깅 단계의 세 단계로 이루어진다. 처음 두 단계는 CRF방법에 기반을 두고, 세 번째 단계에서는 일반화된 HMM (lattice-HMM)을 활용한다. 제안 방법은 세종 말뭉치 코퍼스에서 5-fold cross-validation로 평가한 결과, 약 96%의 품사 태깅 성능을 보여주었다.
기존의 전통적인 한국어 형태소 분석 및 품사 태깅 방법론은 먼저 형태소 후보들을 생성한 뒤 수많은 조합에서 최적의 확률을 가지는 품사 태깅 결과를 구하는 두 단계를 거치며 추가적으로 형태소의 접속 사전, 기분석 사전 및 원형복원 사전 등을 필요로 한다. 본 연구는 기존의 두 단계 방법론에서 벗어나 심층학습 모델의 일종인 sequence-to-sequence 모델을 이용하여 한국어 형태소 분석 및 품사 태깅을 추가 언어자원에 의존하지 않는 end-to-end 방식으로 접근하였다. 또한 형태소 분석 및 품사 태깅 과정은 어순변화가 일어나지 않는 특수한 시퀀스 변환과정이라는 점을 반영하여 음성인식분야에서 주로 사용되는 합성곱 자질을 이용하였다. 세종말뭉치에 대한 실험결과 합성곱 자질을 사용하지 않을 경우 97.15%의 형태소 단위 f1-score, 95.33%의 어절단위 정확도, 60.62%의 문장단위 정확도를 보여주었고, 합성곱 자질을 사용할 경우 96.91%의 형태소 단위 f1-score, 95.40%의 어절단위 정확도, 60.62%의 문장단위 정확도를 보여주었다.
한국어 형태소 분석 및 태깅은 크게 2가지 단계로 나뉜다. 첫 번째 단계는 어절을 분석하여 후보들을 생성하는 것으로, 여러 의미를 가진 어절은 이 단계에서 다양한 후보들이 생성된다. 두 번째는 문맥 정보를 이용하여 후보 중에 가장 적절한 하나를 선택하는 단계로, 흔히 태깅이라 한다. 일반적으로 두 번째 단계에서는 은닉 마르코프 모델(Hidden Markov Model, 이하 HMM)을 자주 사용하지만, 본 논문에서는 처리속도를 향상시킨 부분어절 조건부확률 모델을 제안한다. 이 모델은 우선적으로 인접 어절 정보를 이용하여 현재 처리 중인 어절의 의미를 결정하고, 예외적으로 용언이 인접한 경우에만 후보 정보의 극히 일부분을 이용한다. 실험 결과 정확률은 HMM의 96.49%보다 0.07% 낮았지만, 처리 소요 시간을 약 53% 감소시켰다.
품사 태깅은 형태소 분석 이후 발생한 모호성을 제거하는 것으로, 통계적 방법과 규칙에 기 반한 방법이 널리 사용되고 있다. 하지만, 이들 방법론에는 각기 한계점을 지니고 있다. 통계적인 방법인 은닉 마코프 모델(Hidden Markov Model)은 유연성(flexibility)을 지니지만, 교착어(agglutinative language)인 한국어에 있어서 제한된 윈도우로 인하여, 중의성 해결의 실마리가 되는 어휘나 품사별 제대로 참조하지 못하는 경우가 있다. 반면, 규칙에 기반한 방법은 차체가 품사에 영향을 받으므로 인하여, 새로운 태그집합(tagset)이나 언어에 대하여 유연성이나 정확성을 제공해 주지 못한다. 이러한 각기 서로 다른 방법론의 한계를 극복하기 위하여, 본 논문에서는 통계와 규칙을 통합한 한국어 태깅 모델을 제안한다. 즉 통계적 학습을 통한 통계 모델이후에 2차적으로 규칙을 자동학습 하게 하여, 통계모델이 다루지 못하는 범위의 규칙을 생성하게 된다. 이처럼 2단계의 통계와 규칙의 자동 학습단계를 거치게 됨으로써, 두개 모델의 단점을 보강한 높은 정확도를 가지는 한국어 태거를 개발할 수 있게 하였다.
의존관계 분석은 문장의 어절 간에 의존소-지배소를 결정하는 작업이다. 용언은 문형 및 하위범주화 정보의 선택제약에 의해 다른 어절과의 의존관계를 형성한다. 본 논문은 형태소 분석 단계에서 동형이의어 분별된 용언의 문형을 이용하여 용언의 의존관계를 분석하는 방법을 제안한다. 특히, 형태소분석 단계에서 품사 및 동형이의어 태깅을 위해 사용하는 단계별 전이모델의 학습사전을 재활용하여 {명사+격조사, 용언} 간의 의존관계를 확정하는 방안을 제안하고 그의 정확률 및 영향을 분석한다. 동형이의어가 부착되고 의존관계로 변경된 21개의 세종구문분석말뭉치를 이용하여 실험한 결과, 동형이의어 분별된 의존관계 분석 정확률이 80.38%로, 동형이의어가 분별되지 않은 의존관계분석에 비해 0.42%의 정확률 향상이 있었으며, 유의수준 1%의 검정통계량 Z는 ${\mid}Z{\mid}=4.63{\geq}z_{0.01}=2.33$으로 동형이의어 분별이 의존관계 분석에 영향이 있음을 보였다. 또한, 단계별 전이모델이 의존관계 분석 정확률에 약 7.14% 영향을 미치는 것을 알 수 있었다.
본 시스템은 LSA 또는 벡터공간 모델 방식을 이용하여, 문장 대 문장, 문서 대 문장, 다중 문서 간유사도 분석을 수행한다. 이는 문서의 특수문자를 제거한 뒤, 형태소 분석을 기반으로 단어를 추출하여 TF-IDF 가중치를 추출한뒤 행렬 계산을 통하여 Cosine 계산식을 사용하여 유사성을 검출하는 단계로 구성된다. 제시된 기법은 2개의 오픈소스를 이용하며, x86 기반 64bit Windows에서 개발되었으며, 60% 이상의 정확도를 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.