• Title/Summary/Keyword: 2단계 클러스터링

Search Result 72, Processing Time 0.025 seconds

An Empirical Study on the Clustering Measurement and Trend Analysis among the Asian Ports Using the Context-dependent and Measure-specific Models (컨텍스트의존 모형 및 측정특유 모형을 이용한 아시아항만들의 클러스터링 측정 및 추세분석에 관한 실증적 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.1
    • /
    • pp.53-82
    • /
    • 2012
  • The purpose of this paper is to show the clustering trend by using the context-dependent and measure-specific models for 38 Asian ports during 10 years(2001-2009) with 4 inputs and 1 output. The main empirical results of this paper are as follows. First, clustering results by using context-dependent and measure-specific models are same. Second, the most efficient clustering was shown among the Hong Kong, Singapore, Ningbo, Guangzhou, and Kaosiung ports. Third, Port Sultan Qaboos, Jeddah, and Aden ports showed the lowest level clustering. Fourth, ranking order of attractiveness is Guangzhou, Dubai, HongKong, Ningbo, and Shanghai, and the results of progressive scores confirmed that low level ports can increase their efficiency by benchmarking the upper level ports. Fifth, benchmark share showed that Dubai(birth length), and HongKong(port depth, total area, and no. of cranes) have affected the efficiency of the inefficient ports.

Two-step Clustring Method Using Time Schema for Performance Improvement in Recommender System (시간스키마 기법 2단계 클러스터링 적용 추천시스템의 성능 향상)

  • Kim Ryong;Bu Jong-Su;Hong Jong-Kyu;Park Won-Ik;Kim Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.205-207
    • /
    • 2005
  • 기존의 추천 시스템들은 사용자 수가 증가함에 따라 추천시간이 증가하는 확장성(Scalability) 문제가 있으며, 새로운 고객의 경우 선호도 정보가 부족하여 추천 정확도가 저하되는 희박성(Saparsity) 문제가 있다. 본 논문에서는 고객의 기본 프로파일 정보 중 가장 변별력이 있는 성과 나이에 대한 그룹을 생성하고 클러스터링 함으로써 집단 내 선호 상품을 우선적으로 추천하는 1단계 클러스터링 방법을 사용하여 새로운 고객의 희박성 문제를 해결 했으며, 추천결과에 따른 피드백을 받아 시간 흐름에 따른 선호 경향을 클러스터링 하는 시간스키마 방법을 적용한 2단계 클러스터링 방법을 사용함으로써 확장성 문제를 해결함은 물론 예측 정확도를 높일 수 있는 방법을 제안한다.

  • PDF

Phased Visualization of Facial Expressions Space using FCM Clustering (FCM 클러스터링을 이용한 표정공간의 단계적 가시화)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.18-26
    • /
    • 2008
  • This paper presents a phased visualization method of facial expression space that enables the user to control facial expression of 3D avatars by select a sequence of facial frames from the facial expression space. Our system based on this method creates the 2D facial expression space from approximately 2400 facial expression frames, which is the set of neutral expression and 11 motions. The facial expression control of 3D avatars is carried out in realtime when users navigate through facial expression space. But because facial expression space can phased expression control from radical expressions to detail expressions. So this system need phased visualization method. To phased visualization the facial expression space, this paper use fuzzy clustering. In the beginning, the system creates 11 clusters from the space of 2400 facial expressions. Every time the level of phase increases, the system doubles the number of clusters. At this time, the positions of cluster center and expression of the expression space were not equal. So, we fix the shortest expression from cluster center for cluster center. We let users use the system to control phased facial expression of 3D avatar, and evaluate the system based on the results.

A Clustering Method of Web Navigation Pattern Using the Hyperplane (하이퍼플래인을 이용한 웹 방문 패턴에 대한 사용자 클러스터링)

  • 이해각;주영옥
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.608-611
    • /
    • 2004
  • 사용자 웹 방문 패턴 발견으로써의 사용자 클러스터링은 웹 사이트를 이용하는 사용자들의 취향과 행동방식을 얻어내는데 매우 유용하다. 또한 이러한 정보는 웹 개인화나 웹 사이트를 재구성 하는 데 필수적 이 다. 본 논문에서 사용자 웹 방문 패스를 클러스터링 하기 위한 시간적으로 효율적이며, 패스 특성을 보다 정확하게 표현하여 클러스터링 할 수 있는 알고리즘이 제안되며, 제안된 알고리즘은 패스 간의 유사도 측정을 통한 클러스터링, 하이퍼플랜을 이용한 K-평균 클러스터링의 2단계 과정으로 이루어져 있다.

  • PDF

Two-step Indexing Method for XML data (XML 데이터의 2단계 인덱싱 기법)

  • Lee, Bum-Suk;Hwang, Byung-Yeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.333-335
    • /
    • 2009
  • XML은 웹2.0 환경에서 데이터의 저장과 전달을 위한 역할을 수행하는 필수적인 포맷으로 각광받고 있다. 특히 RSS나 ATOM과 같은 피드기술은 XML을 이용한 성공적인 사례로 인정받고 있다. 이러한 XML 포맷 데이터는 빠른 검색을 위해 경로기반 클러스터링 기법이나 내용기반 클러스터링 기법을 적용하는 것이 일반적이다. 하지만 클러스터링 기법을 적용할 때 주어지는 임계값에 따라 재현율이 변화하게 되고, 검색 결과에서 배제되는 데이터가 발생하게 된다. 이 논문에서는 기존 클러스터링 기법을 적용할 때 발생하는 데이터 배제현상을 보완하는 2단계 인덱싱 기법을 제안하고, 제안한 방법의 성능에 대해 분석한다.

A Study on Web-User Clustering Algorithm for Web Personalization (웹 개인화를 위한 웹사용자 클러스터링 알고리즘에 관한 연구)

  • Lee, Hae-Kag
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2375-2382
    • /
    • 2011
  • The user clustering for web navigation pattern discovery is very useful to get preference and behavior pattern of users for web pages. In addition, the information by the user clustering is very essential for web personalization or customer grouping. In this paper, an algorithm for clustering the web navigation path of users is proposed and then some special navigation patterns can be recognized by the algorithm. The proposed algorithm has two clustering phases. In the first phase, all paths are classified into k-groups on the bases of the their similarities. The initial solution obtained in the first phase is not global optimum but it gives a good and feasible initial solution for the second phase. In the second phase, the first phase solution is improved by revising the k-means algorithm. In the revised K-means algorithm, grouping the paths is performed by the hyperplane instead of the distance between a path and a group center. Experimental results show that the proposed method is more efficient.

Combined Image Retrieval System using Clustering and Condensation Method (클러스터링과 차원축약 기법을 통합한 영상 검색 시스템)

  • Lee Se-Han;Cho Jungwon;Choi Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.53-66
    • /
    • 2006
  • This paper proposes the combined image retrieval system that gives the same relevance as exhaustive search method while its performance can be considerably improved. This system is combined with two different retrieval methods and each gives the same results that full exhaustive search method does. Both of them are two-stage method. One uses condensation of feature vectors, and the other uses binary-tree clustering. These two methods extract the candidate images that always include correct answers at the first stage, and then filter out the incorrect images at the second stage. Inasmuch as these methods use equal algorithm, they can get the same result as full exhaustive search. The first method condenses the dimension of feature vectors, and it uses these condensed feature vectors to compute similarity of query and images in database. It can be found that there is an optimal condensation ratio which minimizes the overall retrieval time. The optimal ratio is applied to first stage of this method. Binary-tree clustering method, searching with recursive 2-means clustering, classifies each cluster dynamically with the same radius. For preserving relevance, its range of query has to be compensated at first stage. After candidate clusters were selected, final results are retrieved by computing similarities again at second stage. The proposed method is combined with above two methods. Because they are not dependent on each other, combined retrieval system can make a remarkable progress in performance.

A Study on the Asia Container Ports Clustering Using Hierarchical Clustering(Single, Complete, Average, Centroid Linkages) Methods with Empirical Verification of Clustering Using the Silhouette Method and the Second Stage(Type II) Cross-Efficiency Matrix Clustering Model (계층적 군집분석(최단, 최장, 평균, 중앙연결)방법에 의한 아시아 컨테이너 항만의 클러스터링 측정 및 실루엣방법과 2단계(Type II) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.31-70
    • /
    • 2021
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Hierarchical clustering(single, complete, average, and centroid), Silhouette, and 2SCE[the Second Stage(Type II) cross-efficiency] matrix clustering models on Asian container ports over the period 2009-2018. The models have chosen number of cranes, depth, birth length, and total area as inputs and container TEU as output. The main empirical results are as follows. First, ranking order according to the efficiency increasing ratio during the 10 years analysis shows Silhouette(0.4052 up), Hierarchical clustering(0.3097 up), and 2SCE(0.1057 up). Second, according to empirical verification of the Silhouette and 2SCE models, 3 Korean ports should be clustered with ports like Busan Port[ Dubai, Hong Kong, and Tanjung Priok], and Incheon Port and Gwangyang Port are required to cluster with most ports. Third, in terms of the ASEAN, it would be good to cluster like Busan (Singapore), Incheon Port (Tanjung Priok, Tanjung Perak, Manila, Tanjung Pelpas, Leam Chanbang, and Bangkok), and Gwangyang Port(Tanjung Priok, Tanjung Perak, Port Kang, Tanjung Pelpas, Leam Chanbang, and Bangkok). Third, Wilcoxon's signed-ranks test of models shows that all P values are significant at an average level of 0.852. It means that the average efficiency figures and ranking orders of the models are matched each other. The policy implication is that port policy makers and port operation managers should select benchmarking ports by introducing the models used in this study into the clustering of ports, compare and analyze the port development and operation plans of their ports, and introduce and implement the parts which required benchmarking quickly.

Two-step Clustering Method Using Time Schema for Performance Improvement in Recommender Systems (추천시스템의 성능 향상을 위한 시간스키마 적용 2단계 클러스터링 기법)

  • Bu Jong-Su;Hong Jong-Kyu;Park Won-Ik;Kim Ryong;Kim Young-Kuk
    • The Journal of Society for e-Business Studies
    • /
    • v.10 no.2
    • /
    • pp.109-132
    • /
    • 2005
  • With the flood of multimedia contents over the digital TV channels, the internet, and etc., users sometimes have a difficulty in finding their preferred contents, spend heavy surfing time to find them, and are even very likely to miss them while searching. In this paper we suggests two-step clustering technique using time schema on how the system can recommend the user's preferred contents based on the collaborative filtering that has been proved to be successful when new users appeared. This method maps and recommends users' profile according to the gender and age at the first step, and then recommends a probabilistic item clustering customers who choose the same item at the same time based on time schema at the second stage. In addition, this has improved the accuracy of predictions in recommendation and the efficiency in time calculation by reflecting feedbacks of the result of the recommender engine and dynamically update customers' preference.

  • PDF

A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model (인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.757-772
    • /
    • 2019
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Artificial Neural Network, Social Network, and Tabu Search models on 38 Asian container ports over the period 2007-2016. The models consider number of cranes, depth, birth length, and total area as inputs and container throughput as output. Followings are the main empirical results. First, the variables ranking order which affects the clustering according to artificial neural network are TEU, birth length, depth, total area, and number of cranes. Second, social network analysis shows the same clustering in the benevolent and aggressive models. Third, the efficiency of domestic ports are worsened after clustering using social network analysis and tabu search models. Forth, social network and tabu search models can increase the efficiency by 37% compared to that of the general CCR model. Fifth, according to the social network analysis and tabu search models, 3 Korean ports could be clustered with Asian ports like Busan Port(Kobe, Osaka, Port Klang, Tanjung Pelepas, and Manila), Incheon Port(Shahid Rajaee, and Gwangyang), and Gwangyang Port(Aqaba, Port Sulatan Qaboos, Dammam, Khor Fakkan, and Incheon). Korean seaport authority should introduce port improvement plans by using the methods used in this paper.