• Title/Summary/Keyword: 2,6-di-tert-Butylphenol (DTBP)

Search Result 2, Processing Time 0.016 seconds

산소 첨가된 Cobalt(Ⅲ) 착물에 의한 2,6-di-tert-butylphenol의 산화반응

  • O, Jeong Geun;Im, Chae Pyeong;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.219-224
    • /
    • 2002
  • The oxidation reaction between 2,6-di-tert-butylphenol (DTBP) and oxygen adducted Co(III) complexes as a catalysis has been studied by UV-visible spectrophtometry. According to the results, main product is 2,6-di-tert-butylbenzoquinone(BQ) and the activity of the complexes is bigger in [Co(III)2(SMPD)2(Py)2]2O2 than in [Co(III)2(SPPD)2(Py)2]2O2. The rate constant is 4.55~2.12${\times}$10$-3}$s. It was found that the oxidation reaction is primary reac-tion or concentration of catalysis, O2 molecule and substance. The reasult is far from Arrhenius properties because acti-vationenergy is 10.38 kJ/mol.

Identification of Jet fuel (JP-8) in Petroleum Hydrocarbon Contaminated Soil through the Qualitative Analysis of Antioxidants (유류 오염 토양 중 산화방지제 정성 분석을 통한 항공유(JP-8) 유종 판별)

  • Kim, Yonghun;Lee, Goontaek;Jang, Hanjeon;Jo, Yunju;Kim, Moongun;Choi, Jaeho;Kang, Jiyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.37-48
    • /
    • 2022
  • Accurate analysis of petroleum hydrocarbons in soil is an important prerequisite for proper source tracking of contamination. Identification of petroleum compounds is commonly carried out by peak pattern matching in gas chromatography. However, this method has several technical limitations, especially when the soils underwent biological, physical and chemical transformation. For instance, it is very difficult to distinguish jet fuel (JP-8) from kerosene because JP-8 is derivatized from secondary reaction between chemical agents (e.g. anti-oxidants, antifreezer and so on) and kerosene. In this study, an alternative method to separately analyze JP-8 and kerosene in the petroleum hydrocarbon contaminated soil was proposed. Qualitative analyses were performed for representative phenolic antioxidants [2,6-di-tert-butyl phenol (2,6-DTBP), 2,4-di-tert- butylphenol(2,4-DTBP), 2,6-di-tert-butyl-4-methyl phenol (2,6-DTBMP)] using a two dimensional gas chromatograph mass spectrometer (2D GC×GC-TOF-MS). This qualitative analysis of antioxidants in soil would be a useful complementary tool for the peak pattern matching method to identify JP-8 contamination in soil.