• Title/Summary/Keyword: 2,4-dichlorophenoxyacetic acid, response surface methodology, Aeromonas sp. optimization, Box-Behnken

Search Result 1, Processing Time 0.016 seconds

Statistical Optimization for Biodegradation of 2,4-Dichlorophenoxyacetic Acid by Soil Isolated Bacterium (토양 분리 박테리아에 의한 2,4-Dichlorophenoxyacetic산의 분해 최적화)

  • Kim, Byunghoon;Myunghee Han;Sungyong Cho;Sungjin Ahn;Lim, Sung-Paal;Sunkyun Yoo
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 2003
  • 2,4-Dichlorophenoxyacetic acid (2,4-D) as a widely used herbicide has caused serious environmental problems because of its difficult decomposition in nature. We isolated the strain capable of metabolizing 2,4-D as sole carbon and energy source by an enrichment culture technique from the 2,4-D contaminated soil collected at orchard in Gwangju, Korea. This strain was identified tentatively as Aeromonas sp. NOH2. With this strain, we established the response surface methodology (Box-Behnken Design) to optimize the principle parameters for maximizing biodegradation of 2,4-D such as culture pH, temperature, and nutrient concentration in liquid batch culture. The ranges of parameters were obtained from preliminary works done at our laboratory and chosen as 5.5, 6.5, and 7.5 for pH, 25, 30, and $35^{\circ}C$ for temperature, and 5, 20, and 35 g/1 nutrient concentration. Initial concentration of 2,4-D was 500 ppm and nutrient source was tryptic soy broth. The experimental data were significantly fitted to a second order polynomial equation using multiple regression. The most important parameter influencing 2,4-D degradation and biomass production was nutrient concentration. For 2,4-D degradation, the optimum values of pH and temperature, and nutrient concentration were obtained at pH (6.5), temperature (31.8 to $32.1^{\circ}C$), and nutrient concentration (29.6 to 30.1.0 g/1).