• Title/Summary/Keyword: 2,3-Butanediol Dehydration

Search Result 2, Processing Time 0.014 seconds

Techno-economic evaluation of the 2,3-butanediol dehydration process using a hydroxyapatite-alumina catalyst

  • Song, Daesung;Yoon, Young-Gak;Lee, Chul-Jin
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2348-2354
    • /
    • 2018
  • We designed a conceptual model of the 2.3-BDO dehydration process using a hydroxyapatite-alumina catalyst and estimated its economic feasibility to predict the appropriate range of the purchase price of 2,3-BDO on commercial scale. The conceptual design and economic analysis can offer valuable information for the industrial application of 2,3-BDO because the most relevant studies have limitation in laboratory scale. Furthermore, the adequate range of 2,3-BDO price, in which the process has profitability, was investigated with the current market prices of 1,3-BD. The investigated price in terms of 2,3-BDO dehydration can pertain to estimation of the economic feasibility in 2,3-BDO production process.

Design of Commercial 2,3-Butanediol Dehydration Reaction System Considering Safety (안전을 고려한 상용 2,3-Butanediol 탈수반응 시스템 설계)

  • Song, Daesung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.581-587
    • /
    • 2020
  • In this study, a new reaction system is proposed to solve the problems of the existing 2,3-Butanediol (2,3-BDO) dehydration reaction system. It was confirmed that the reaction system did not wok as it should operate properly when using a furnace, which is commonly used in commercial processes, to raise the reactant, 2,3-BDO, to the reaction temperature, 360 ℃, at near atmoshperic pressure. It is because of the substance considered to be oligomers of 2,3-BDO. It can lead to safety problems, such as blockages inside the furnace's tube and explosions, as well as tricky maintenance issues in the reaction system. To solve it, the temperature of reactant can be brought down by using a heat exchanger with High Pressure (HP) steam instead of the furnace, which has a hot spot problem through the vacuum operation and reduce the reaction temperature. It can be seen that the reactor performance is almost similar under the vacuum operation and the lower reaction temperature, 330 ℃, by using a reaction kinetics. This result explains why the new reaction system is proposed.