• Title/Summary/Keyword: 2, 4, 6-TNT

Search Result 78, Processing Time 0.027 seconds

Evaluation of Vibrio Fischeri Toxicity for Biological Treatment of TNT-contaminated Soil (TNT 오염토양의 생물학적 처리에 대한 Vibrio Fischeri 독성 평가)

  • Park, Joon-Seok;In, Byung-Hoon;Namkoong, Wan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.204-214
    • /
    • 2013
  • This research was performed to evaluate Vibrio fischeri toxicity for TNT-contaminated soils treated by composting and slurry phase bioreactor, which were operated for 45 and 200 days, respectively. In case of composting, the GL value of acetone-added soil was 40, which was lower than th at of glucose-added soil after treatment. In case of slurry phase bioreactors under anaerobic, anaerobic/aerobic, and aerobic regimes, they showed the GL values of 6, 8, and 4 after treatment, respectively. It was evaluated that the toxicity of all slurry phase bioreactors was reduced significantly to detoxification. The relationships between GL value and the number of S. typhimurium in both composting and slurry phase bioreactor were developed as the first order equations with high correlation coefficient (r > 0.8890).

TNT and Nutrients Removal in the Constructed Wetlands

  • Park, Jong-Kyu;Kim, Se-Kyoung;Song, Keun-Yea;Kang, Su-Jin;Kim, Tak-Soo;Kang, Ho-Jeong;Zoh, Kyung-Duk
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.199-203
    • /
    • 2003
  • This study was carried out to investigate the removal of 2,4,6-trinitrotoluene, nutrients such as nitrogen, phosphorous compounds in the wetland microcosms. Microcosm study indicated that TNT nutrients were more lastly reduced in the anaerobic condition. The major reductive transformation products included 2,4diamino-6-nitrotoluene (2,4-DANT) 2,6diamino-4-nitrotoluene (2,6-DANT) 4diamino-2,6-nitrotoluene (4-ADNT) 2diamino-4,6-nitrotoluene (2-ADNT). The experimental results for nitrogen removal showed that denitrification kom NO$\sub$3//$\^$-/ to NH$_3$ was dominant process at the bottom of marsh, but nitrification from NH$_3$ to NO$\sub$3//$\^$-/ was dominant on the top of marsh.

  • PDF

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin $B_{12}$, on the reduction rate of Tn by $Fe^0$ was quantitatively analyzed using a batch reactor In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator) , vitamin $B_{12}$, has augmented besides $Fe^0$. In the presence of 8.0 $mu\textrm{g}$/L of vitamin $B_{12}$, the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin $B_{12}$ can be a promising rate controlling option for the removal of organics using a $Fe^0$ filled permeable reactive barrier.

  • PDF

Characterization of NAD(P)H-nitroreductase Purified from the TNT-degrading Bacterium, Stenotrophomonas sp. OK-5 (폭약 TNT 분해세균 Stenotrophomonas sp. OK-5에서 분리된 NAD(P)H-nitroreductase의 정제 및 특성 연구)

  • Ho, Eun-Mi;Cheon, Jae-U;Gang, Hyeong-Il;O, Gye-Heon
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • The purpose of this work was to perform the characterization of NAD(P)H-nitroreductase isolated from Stenotrophomonas sp. OK-5 capable of degrading 2,4,6-trinitrotoluene (TNT). Initially, NADP(H)-nitroreductase by a series of purification processes including ammonium sulfate precipitation, DEAE-sepharose, andQ-sepharose was prepared. From samples harvested from fraction collector, three different fractions (I, II & III)having the enzyme activity of NAD(P)H-itroreductase were detected. Specific activities of three fractions I, II,and III of NAD(P)H-nitroreductase were determined to approximately 5.06 unit/mg, 4.95 unit/mg and 4.86 unit/mg, and concentrated to 10.5, 9.8, and 8.9-fold compared to crude extract, respectively. Among these three fractions,the fraction I of NAD(P)H-nitroreductase demonstrated the highest specific activity in this experiment. Several factors affecting on the enzyme activity of NAD(P)H-nitroreductase (fractions I, II & III) were investigated.The optimum temperature of all NAD(P)H-nitroreductase (fractions I, II & III) was 30oC, and the optimal pH was approximately 7.5. Metal ions such as Ag+, Cu2+, Hg2+ inhibited approximately 80% enzyme activity of all NAD(P)H-nitroreductase, and the enzyme activities were decreased about 30-40% inhibition in the presence of Mn2+ or Ca2+. However, Fe3+ showed stimulatory effect on the enzyme activity. The molecular weights of NAD(P)H-nitroreductase (fractions I, II & III) were measured about 27 kDa on the SDS-PAGE.

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.

Treatment of TNT Red Water by the Ozone-based Advanced Oxidation Processes (오존을 산화제로 사용한 다양한 고급산화 공정에 의한 TNT Red Water의 처리)

  • Jun, Jun Chul;Kwon, Tae Ouk;Moon, Il Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.298-303
    • /
    • 2007
  • Several combinations of ozone based advanced oxidation processes were tested for the treatment of red water (RW) containing recalcitrant chemical pollutants produced from 2,4,6-trinitrotoluene (TNT) manufacturing process. $O_3$, $UV/O_3$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested for the treatment of RW. The order of organic and color removal efficiency was found to be : $O_3{\leq}UV/O_3$ < $UV/O_3/H_2O_2$ < $UV/O_3/H_2O_2/Fe^{2+}$. The optimum conditions for the removal of organic and color in the $UV/O_3/H_2O_2/Fe^{2+}$ process were 0.053 g/min of ozone flow rate, 10 mM of $H_2O_2$ concentration and 0.1 mM of $FeSO_4$ concentration. Organic and color removal efficiencies were 96 and 100 % respectively in the $UV/O_3/H_2O_2/Fe^{2+}$ process. tert-butyl alcohol (t-buOH) was used as the hydroxyl radical scavenger. Enhancement of hydroxyl radical production was achieved by the combination of ozone with several oxidants such as UV, $H_2O_2$, $Fe^{2+}$.

Determination of Optimum Operating Parameters for Enhanced Alkaline Hydrolysis of Soils Contaminated with TNT (TNT 오염토의 염기성 가수분해 효율 향상을 위한 최적 운전인자 도출)

  • Lee, Hwan;Choi, Jae-Heon;Lee, Cheol-Hyo;Kim, Ju-Yup
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.103-110
    • /
    • 2015
  • Nitro-aromatic Compounds (NACs) of explosives are structurally non-degradable materials that have an adverse effect to humans and ecosystems in case of emissions in natural due to the strong toxicity. In this study, batch test in the laboratory-scale has been conducted to find some process parameters of alkaline hydrolysis by considering the characteristics of NACs which are unstable in a base status and field application evaluation have been performed on the batch test results. Based on the experimental results of both laboratory and pilot-scale test, the optimum conditions of parameters for the alkaline hydrolysis of soils contaminated with explosives were pH 12.5, above the solid-liquid ratio 1 : 3, above the room temperature and 30 minute reaction time. In these four process parameters, the most important influencing factor was pH, and the condition of above pH 12.0 was necessary for high contaminated soils (more than 60 mg/kg). In the case of above pH 12.5, the efficiency of alkaline hydrolysis was very high regardless of the concentrations of contaminated soils. At pH 11.5, the removal efficiency of TNT was increased from 76.5% to 97.5% when the temperature in reactor was elevated from room temperature to 80℃. This result shows that it is possible to operate the alkaline hydrolysis at even pH 11.5 due to increased reaction rate depending on temperature adjustment. The results found in above experiments will be able to be used in alkaline hydrolysis for process improvement considering the economy.

Distribution and Behavior of Mixed Contaminants, Explosives and Heavy Metals, at a Small Scale Military Shooting Range (국내 소규모 군사격장 복합오염물질(화약물질 및 중금속)의 분포 및 거동)

  • Park, Seokhyo;Bae, Bumhan;Kim, Minkyung;Chang, Yoonyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.523-532
    • /
    • 2008
  • A phase II site investigation and feasibility study was conducted at a military mortar shooting range near the demilitarized zone (Kyunggi, South Korea) to assess the extent of contaminants migration to the nearby Imjin river in which a flood control dam is under construction. The results showed that silty-clay soils around target areas were co-contaminated with heavy metals (Cd, Cu, and Pb) and explosives (HMX, RDX, and TNT). The total amount of contaminant was estimated to be 497.1 kg-RDX, 20.6 kg-HMX, 1.4 kg-TNT, 35.2 kg-Cd, 4,331 kg-Cu, and 5,115 kg-Pb, respectively. Both heavy metals and explosives were almost equally distributed on each soil particle size fraction. Neither subsurface soil samples nor ground water samples showed signs of contamination above the environmental criteria. The major migration route of contaminants was soil particles in surface run-off during rain at which a mass discharge rate of 30.0 mg-RDX/hour was observed.