• Title/Summary/Keyword: 2,\

Search Result 605,391, Processing Time 0.221 seconds

Preparation and Reactions of Bis(trimethylsilylmethyl)-1,2-bis(disphenylphosphino)ethanenickel(II) (비스(트리메틸실릴메틸) 1,2-비스(디페닐포스피노)에탄니켈(II)의 합성 및 반응)

  • Chong Shik Chin;M. D. Curtis
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.311-317
    • /
    • 1981
  • A new nickel(II) compound, $Ni(CH_2SiMe_3)_2((C_6H_5)_2PCH_2CH_2P(C_6H_5)_2)$, 1, has been prepared by the reaction of $NiCl_2((C_6H_5)_2PCH_2CH_2P(C_6H_5)_2)$ with $Me_3SiCH_2Li$. The compound, 1, is stable under nitrogen at room temperature both in solution and in the solid state. Thermal decomposition of 1 in solution or in the solid produces the reductive coupling product, $Me_3SiCH_2CH_2SiMe_3$ which is also afforded by the reactions of 1 with CO and $O_2$ at room temperature, and with $(C_6H_5)_2PCH_2CH_2P(C_6H_5)_2$ at 80${\circ}$C.

  • PDF

Crystallization properties of $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ Glass for cathod material (정극 재료용 $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ 유리의 결정화 특성)

  • Son, Myung-Mo;Lee, Heon-Su;Gu, Hal-Bon;Jeong, In-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.311-315
    • /
    • 2000
  • Vanadate glass in the $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ system containing 10mol% glass fonner, $P_2O_5$ and $Bi_2O_3$ was prepared by melting the batch in pt. crucible followed by Quenching on the copper plate. We found that $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ glass-ceramics obtained from nucleation of glass showed signifieantly higher capacity and longer cycle life than conventionally made crystalline $LiV_3O_{8}$. In the present paper, we describe the charge / discharge properties during crystallization process and find the best crystallization condition of $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ glass as cathod material.

  • PDF

Synthesis and Structure of trans-Dichlorobis(diisopropylaniline) palladium(II), trans-$[Pd(NH_2-C_6H_3-2, 6-i-Pr_2)_2Cl_2]$ (trans-Dichlorobis(diisopropylaniline) palladium(II), trans-$[Pd(NH_2-C_6H_3-2, 6-i-Pr_2)_2Cl_2]$의 합성 및 구조)

  • Hye Jin Kim;Won Seok Han;Soon Won Lee
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.137-140
    • /
    • 2001
  • Compound PdCl₂(Phc≡N)₂(1) reacted with 2,6-diisopropylaniline to give trans-[Pd(NH₂-C/sub 6/-H₃-2, 6-i-Pr₂)₂Cl₂] (2). Compound 2 was characterized by spectroscopy (¹H-NMR, /sup 13/C-NMR, and IR) and X-ray diffraction. Crystallographic data for 2: monoclinic space group P2₁/n, a=13.532(3) Å, b=5.749(1) Å, c=17.880(4)Å, β=103.84(2)°, Z=2, R(wR₂)=0.0466(0.1226).

  • PDF

Synthesis and Cobalt-Complexes of 1,2,3,4,5,6-Hexaalkyl-1,4-dibora-2-cyclohexene (1,2,3,4,5,6-Hexaalkyl-1,4-dibora-2-cyclohexene의 생성과 착물 생성)

  • Uhm, Jae-Koouk;An, Hee-Won
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.586-589
    • /
    • 1997
  • 1,2,3,4,5,6-Hexaalkyl-1,4-dibora-2-cyclohexene was not produced by the general preparation method in our laboratory because of difficulties in the preparation of $B_2Cl_4.$ 2,3-Dietyl-1,4,5,6-tetramethyl-1,4-dibora-2-cyclohexene, 2 was synthesized by the reduction-oxidation reaction of potassium and methyliodide from 1,4-dimethyl-2,3-diethyl-1,4-dibora-2-cyclohexene, 1 as a substrate. Cobalt sandwich-complexes, 6, 7 and 8 were synthesized by the reaction of 2,3-diethyl-1,4,5,6-tetramethyl-1,4-dibora-2-cyclohexene with $({\eta}5-C_5H_5Co(C_2H_4)_2.$.

  • PDF

Proton Transfer Reactions and Ion-Molecule Reactions of Ionized XCH2CH2Y (X and Y = OH or NH2)

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.539-544
    • /
    • 2006
  • Proton transfer reactions and ion-molecule reactions of bifunctional ethanes of $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$ were studied using Fourier transform mass spectrometry (FTMS). The rate constants for proton transfer reactions between the fragment ions and neutral molecules were obtained from the temporal variation of the ion abundances. The rate constants were consistent with the heats of reaction. The fastest proton transfer reactions were the reactions of $CH_2N^+$, $CHO^+$, and $CH_3O^+$ for $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$, respectively. The $[M+13]^+$ ion was formed by the ion-molecule reaction between $H_2C=NH_2 ^+$ or $H_2C=OH^+$ and the neutral molecule. The major product ions generated from the ion-molecule reactions between the protonated molecule and neutral molecule were $[2M+H]^+$, $[M+27]^+$, and $[M+15]^+$.

One-Pot Synthesis, Crystal Structures and Thermal Properties of Two Three-Dimensional Cobalt(II) Complexes

  • Tao, Bo;Lei, Wen;Cheng, Feiran;Xia, Hua
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1929-1933
    • /
    • 2012
  • Two cobalt(II) compounds $[Co(2,2{^\prime}-bipy)(H_2O)_2(SO_4)]_n$ (1) and $[Co_2(2,2^{\prime}-bipy)_2(btec)(H_2O)_6]{\cdot}2H_2O$ (2) (2,2'-bipy = 2,2'-bipyridine, $H_4btec$ = 1,2,4,5-benzenetetracarboxylic acid), have been simultaneously synthesized by a one-pot slow solvent evaporation reaction. Their structures were determined by single-crystal X-ray diffraction and further characterized by X-ray powder diffraction (XRPD), IR, elemental and thermogravimetric analysis (TGA). The structural analysis reveals that compound 1 exhibits an infinite 1D chain structure with the octahedral Co(II) centers bridging by the tetrahedral ${\mu}_2-SO{_4}^{2-}$ ligands, while compound 2 possesses a dinuclear $Co_2(2,2^{\prime}-bipy)_2(btec)(H_2O)_6$ unit and the two adjacent octahedral Co(II) ions are linked by the bismonodentately coordinated btec ligand. Additionally, compound 2 exhibits blue fluorescent emission in the solid state at room temperature.

Palladium(II) p-Tolylamide and Reaction with CO2 to Generate a Carbamato Derivative

  • Seul, Jung-Min;Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3745-3748
    • /
    • 2010
  • Pd(II) p-tolylamide Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)(NH($C_6H_4Me$-p)) (1) was metathetically prepared by the reaction of Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)Cl with NaNH($C_6H_4Me$-p). Treatment of 1 with carbon dioxide affords the palladium(II) carbamate Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)(OC(O)NH($C_6H_4Me$-p)) (2), quantitatively. Complex 2 reacts with HX (X = Cl, OTf) to give Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)X, $NH_2$(p-Tol) and $CO_2$. Reaction of the palladium(II) carbamate with MeI produced Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)I along with generation of methyl N-tolylcarbamate MeOC(O)NH($C_6H_4Me$-p), exclusively.

Crystallization and Electrochemical properties of $Li_{2}O=P_{2}O_{5}=V_{2}O_{5}$ Glasses ($Li_{2}O=P_{2}O_{5}=V_{2}O_{5}$ 유리의 결정화에 따른 전기 화학적 특성변화)

  • 손명모;이헌수;구할본;김상기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.523-527
    • /
    • 2000
  • Vanadate glasses in the Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ system containing 10mo1% glass former, P$_2$O$_{5}$ were prepared by melting the batch in pt. crucib1e followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics obtained from nucleation of glass showed significantly higher capacity and longer cycle life than conventionally made crystalline LiCoO$_2$, LiNiO$_2$and LiV$_3$O$_{8}$. In the present paper, We describe electro-chemical properties during crystallization process and find the best crystallization condition of Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ g1ass as cathod material. Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics shows superior rechargeable capacity of 220 mAh/g in the cycling between 2.0 and 3.9V.etween 2.0 and 3.9V.

  • PDF

Enhanced Photoelectrochemical Reaction of MoS2 Nanosheets Vertically Grown on TiO2 Nanowires (MoS2 나노시트의 TiO2 나노선에 수직 성장을 통한 광전기화학반응 향상)

  • Seo, Dong-Bum;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.92-96
    • /
    • 2021
  • We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 ㎛ and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 ℃ using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 ℃ using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.

Study of reaction mechanism in pre-reforming for MCFC (MCFC의 예비 개질 반응 메커니즘 연구)

  • Lee, Woo-Hyung;Park, Yong-Ki
    • Industry Promotion Research
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, the reaction mechanism of ethane and the reaction rate equation suitable for hydrocarbon reforming were studied. Through the reaction mechanism analysis, it was confirmed that three reactions (CO2 + H2, C2H6 + H2, C2H6 + H2O) proceed during the reforming reaction of ethane, each reaction rate (CO2+H2($r=3.42{\times}10-5molgcat.-1\;s-1$), C2H6+H2($r=3.18{\times}10-5mol\;gcat.-1s-1$), C2H6+H2O($r=1.84{\times}10-5mol\;gcat.-1s-1$)) was determined. It was confirmed that the C2H6 + H2O reaction was a rate determining step (RDS). And the reaction equation of this reaction can be expressed as r = kS * (KAKBPC2H6PH2O) / (1 + KAPC2H6 + KBPH2O) (KA = 2.052, KB = 6.384, $kS=0.189{\times}10-2$) through the Langmuir-Hinshelwood model. The obtained equation was compared with the derived power rate law without regard to the reaction mechanism and the power rate law was relatively similar fitting in the narrow concentration change region (about 2.5-4% of ethane, about 60-75% of water) It was confirmed that the LH model reaction equation based on the reaction mechanism shows a similar value to the experimental value in the wide concentration change region.