• Title/Summary/Keyword: 1Stage Shot Peening

Search Result 25, Processing Time 0.025 seconds

The Effect of Compressive Residual Stress on Fatigue Fracture of the Spring steel (현가장치용 SUP-9강의 피로파괴에 미치는 압축잔류응력의 영향)

  • Park, Kyoung-Dong;Jin, Young-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.79-85
    • /
    • 2004
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. Currently, the shot peening is used for removing the defects from the surface of steel and improving the fatigue strength on surface. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9)by shot peening on fatigue crack growth characteristics in stress ratio(R=0 1, R=0 3, R=0 6)was investigated considering fracture mechanics. By using the methods mentioned above, I arrived at the following conclusions: (1) The fatigue crack growth rate(da/dN) of the shot peening material was lower than the unpeening material And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot peening material is high in critical parts unlike the unpeening material. (2) Fatigue life shows more Improvement in the shot peening material than in the unpeening material. And compressive residual stress of surface on the shot peening processed operate the resistance of fatigue crack propagation.

  • PDF

Effect of Stress Ratio on Fatigue Fracture of a Shot Peening Marine Structural Steel (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • PARK KYOUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.43-49
    • /
    • 2004
  • The lightness of components required in the automobile and machine industry necessitates the use of high strength components. In particular, the fatigue failure phenomena, which occurs when using metal, increases the danger to human life and property. Therefore, antifatigue failure technology is an integral part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel, while improving the fatigue strength on surface. Therefore, in this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in a stress ratio(R=0.1, R=0.3, R=0.6) was investigated, giving consideration to fracture mechanics. By using the methods mentioned above, following conclusions are drawn: (1) The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material and in stage I, ΔKth, the threshold stress intensity factor of the shot-peen processed material is high in critical parts, unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material, was higher than that of the un-peening material, as concluded from effect of da/dN. (2) Fatigue life shows more improvement in the shot-peening material than in the un-peening material, and the compressive residual stress of surface on the shot-peen processed operate resistance of fatigue crack propagation.

Effects of shot peening on fatigue strength for high strength (고강도화를 위한 쇼트피닝이 피로강도에 미치는 영향)

  • 이승호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.322-327
    • /
    • 1997
  • This paper investigates the effects of shot peening on mechanical properties of SAE 9254, which is a spring steel used for the suspension system of automobiles. Rotary Bending Fatigue test is accomplished and the results are summarized as fellows : 1. The tensile strength and the hardness do not change so much. 2. The layer of highly residual stress is obtained by multi-stage shot peening. 3. The fatigue strength seems to be improved by residual stress. 4. The fatigue strength of un-peened and multistage shot peened material are 425 MPa and 756 MPa, respectively.

  • PDF

An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature (숏피닝 가공재의 저온 피로 강도 평가)

  • 박경동;권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

A Study of Shot Peened Spring Steel(SUP9) for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature (SUP9 스프링강의 숏피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구)

  • Park, Kyoung-Dong;Son, Myoung-Koon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.22-31
    • /
    • 2003
  • The compressive residual stress, which is induced by shot peening process, seems to be an Important factor in increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue charateristic investigation of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles (차량용 스프링강의 피로균열진전에 미치는 압축잔류응력의 영향)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.82-90
    • /
    • 2003
  • Nowadays, many components used in machinery industry is required lightness and high strength. The shot-peening method is used in order to improve the fatigue life of spring steel(JIS G SUP-9) which is used in suspension of automobile. The compressive residual is induced in this shot-peening process. This paper investigated the effect of the residual compressive stress on the fatigue crack growth characteristics. Main results are summarized as follows. 1. The fatigue crack growth rate on stage II is conspicuous with the level of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, it does not improve the fatigue life comparing when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

A Study on The Effect of Compressive Residual Stress on fatigue Crack Propagation Behavior of Spying Steel (스프링강의 피로크랙 진전거동에 미치는 압축잔류응력의 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.200-207
    • /
    • 2003
  • In this paper, the effect of the compressive residual stresses which were obtained under the various shot velocities of shot balls on the fatigue behaviors of a spring steel, were investigated. The examination of CT specimen test were executed with the materials(JISG SUP9) which are being commonly used for the springs of automotive vehicles. As a result, the optimal shot velocity of shot balls were acquired considering the peak values of the compressive residual stresses on the surface of specimen and effect on the speed of the fatigue crack propagation da/dN in stage II and the threshold stress intensity factor range Δ$K_{th}$ in stage I. Also the material constant C and the crack propagation index m in the formula of paris law da/dN= C $({\Delta}K^m)$ were suggested in this work to estimate the dependency on the shot velocity.

The Effect of Fatigue Fracture in shot peening Marine structural steel at stress ratio (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • Park, Kyoung-Dong;Han, Kun-Mo;Jin, Young-Beom
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.138-144
    • /
    • 2003
  • Rencentely, the request for the light weight is more incresed in the area of industrial environment and machinery and consistent effort is needed to accomplish high strength of material for the direction of light weight. we got the following characteristic from crack growth test carried out in the range of stress ration of 0.1, 0.3 and 0.6 by means of opening mode displacement. At the content stress ratio, the threshold stress intensity factor crack range ${\Delta}K_{th}$in the early stage of fatigue crack growth (Region I) and dtress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. Fatigue life shows more improvement in the Shot-peened material than in the Un-peening material. And compressive residual stress of surface on the Shot peening processed operate resistance force of fatigue. So we can obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is depend on Paris equation. (2) Although the maxium compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maxium compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

A Study of Development Methods of Fatigue Life Improvement for the Suspension Material (현가장치재의 피로수명향상 공법개발에 관한 연구)

  • 박경동;정찬기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

A Study on the Effect of Shot Velocity by Shot Peening on fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로크랙진전특성에 미치는 쇼트피닝 투사속도의 영향)

  • 박경동;노영석
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require such expensive tools, as well as a great deal of time and effort. Therefore, the improvement of fatigue life through, the adoption of residual stress, is the main focus. The compressive residual stress was imposed on the surface according to each shot velocity(1800, 2200, 2600, 3000rpm) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methose mentioned above, we arrived at the following conclusions; 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. In stage I, $\Delta$K$_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts, unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. Compressive residual stress of the surface on the Shot-peen processed operate resistance force of fatigue crack propagation.