• 제목/요약/키워드: 1D nanostructure

검색결과 38건 처리시간 0.023초

Analysis on Design and Fabrication of High-diffraction-efficiency Multilayer Dielectric Gratings

  • Cho, Hyun-Ju;Lee, Kwang-Hyun;Kim, Sang-In;Lee, Jung-Hwan;Kim, Hyun-Tae;Kim, Won-Sik;Kim, Dong Hwan;Lee, Yong-Soo;Kim, Seoyoung;Kim, Tae Young;Hwangbo, Chang Kwon
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.125-133
    • /
    • 2018
  • We report an in-depth analysis of the design and fabrication of multilayer dielectric (MLD) diffraction gratings for spectral beam combining at a wavelength of 1055 nm. The design involves a near-Littrow grating and a modal analysis for high diffraction efficiency. A range of wavelengths, grating periods, and angles of incidence were examined for the near-Littrow grating, for the $0^{th}$ and $-1^{st}$ diffraction orders only. A modal method was then used to investigate the effect of the duty cycle on the effective indices of the grating modes, and the depth of the grating was determined for only the $-1^{st}$-order diffraction. The design parameters of the grating and the matching layer thickness between grating and MLD reflector were refined for high diffraction efficiency, using the finite-difference time-domain (FDTD) method. A high reflector was deposited by electron-beam evaporation, and a grating structure was fabricated by photolithography and reactive-ion etching. The diffraction efficiency and laser-induced damage threshold of the fabricated MLD diffraction gratings were measured, and the diffraction efficiency was compared with the design's value.

선박용 디젤 엔진 수트의 발생원에 따른 구조적 특성 연구 (Structural Characteristics of Marine Diesel Engine Soot by Source)

  • 강준;최재혁;윤성환;김수양;김준수;장하식;이원주
    • 해양환경안전학회지
    • /
    • 제26권1호
    • /
    • pp.114-120
    • /
    • 2020
  • 본 연구에서는 IMO의 향후 예상 규제 물질 중 하나인 수트를 선박용 엔진을 대상으로는 최초로 배기 수트와 엔진 수트로 구분하여 구조적 특성의 비교 분석을 시도하였다. 그리고 최근 발표되고 있는 배기 수트 재활용 연구의 연장선상에서 엔진 수트의 재활용 가능성 여부를 확인하기 위하여 2,000℃로 열처리를 시행하였고, 열처리 전·후의 수트를 고분해능 전자현미경과 라만분광법을 통해 분석하였다. 전자 현미경을 통한 분석 결과, 배기 수트와 엔진 수트는 유사한 형태의 나노 구조를 가지고 있으나, 배기 수트는 구형의 1차 입자가 체인형 결합구조를 가지고 있었고, 엔진 수트는 배기 수트에 비해 무정형한 구조가 확인되었다. 라만분광법 분석 결과, 배기 수트와 엔진 수트 모두 D peak(1,350 cm-1)와 G peak(1,580 ~ 1,600 cm-1)가 확인되었다. 다만, G/D ratio는 엔진 수트에 비해 배기 수트가 상대적으로 높게 나타나며, 이는 배기 수트가 더 흑연화 된 구조를 나타냄을 의미한다. 열처리 후의 분석 결과, 엔진 수트도 배기 수트와 유사하게 흑연화가 문제없이 진행됨을 확인하였고, 이를 통해 선박용 디젤엔진에서 발생하는 배기 수트와 엔진 수트 모두 흑연재료로 재활용이 가능함을 확인하였다.

Nanotube-based Dye-sensitized Solar Cells

  • Kim, Jae-Yup;Park, Sun-Ha;Choi, Jung-Woo;Shin, Jun-Young;Sung, Yung-Eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.71-71
    • /
    • 2011
  • Dye-sensitized solar cells (DSCs) have drawn great academic attention due to their potential as low-cost renewable energy sources. DSCs contain a nanostructured TiO2 photoanode, which is a key-component for high conversion efficiency. Particularly, one-dimensional (1-D) nanostructured photoanodes can enhance the electron transport for the efficient collection to the conducting substrate in competition with the recombination processes. This is because photoelectron colletion is determined by trapping/detrapping events along the site of the electron traps (defects, surface states, grain boundaries, and self-trapping). Therefore, 1-D nanostructured photoanodes are advantageous for the fast electron transport due to their desirable features of greatly reduced intercrystalline contacts with specified directionality. In particular, anodic TiO2 nanotube (NT) electrodes recently have been intensively explored owing to their ideal structure for application in DSCs. Besides the enhanced electron transport properties resulted from the 1-D structure, highly ordered and vertically oriented nanostructure of anodic TiO2 NT can contribute additional merits, such as enhanced electrolyte diffusion, better interfacial contact with viscous electrolytes. First, to confirm the advantages of 1-D nanostructured material for the photoelectron collection, we compared the electron transport and charge recombination characteristics between nanoparticle (NP)- and nanorod (NR)-based photoanodes in DSCs by the stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). We confirmed that the electron lifetime of the NR-based photoanode was much longer than that of the NP-based photoanode. In addition, highly ordered and vertically oriented TiO2 NT photoanodes were prepared by electrochemical anodization method. We compared the photovoltaic properties of DSCs utilizing TiO2 NT photoanodes prepared by one-step anodization and two-step anodization. And, to reduce the charge recombination rate, energy barrier layer (ZnO, Al2O3)-coated TiO2 NTs also applied in DSC. Furthermore, we applied the TiO2 NT photoanode in DSCs using a viscous electrolyte, i.e., cobalt bipyridyl redox electrolyte, and confirmed that the pore structure of NT array can enhance the performances of this viscous electrolyte.

  • PDF

Pretreatment Effect on CO Oxidation over Highly Ordered Mesoporous Silver Catalyst

  • Shon, Jeong-Kuk;Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Moon, Ki-Young;Boo, Jin-Hyo;Han, Tae-Hee;Kim, Ji-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.415-418
    • /
    • 2010
  • Highly ordered mesoporous silver material was successfully synthesized from a mesoporous silica template (KIT-6) with 3-D channel structure using the nano-replication method. The effects of $H_2$ or $O_2$ pretreatments on the catalytic performance of the mesoporous silver were investigated using a temperature programmed CO oxidation technique in a fixed bed reactor. The mesoporous silver material that was pretreated with $H_2$ exhibited an excellent catalytic activity compared to the as-prepared and $O_2$-pretreated catalysts. Moreover, this present mesoporous silver material showed good catalytic stability. For the CO oxidation, the apparent activation energy of the $H_2$-pretreated mesoporous silver catalyst was $61{\pm}0.5\;kJ\;mol^{-1}$, which was also much lower than the as-prepared ($132{\pm}1.5\;kJ\;mol^{-1}$) and $O_2$-pretreated ($124{\pm}1.4\;kJ\;mol^{-1}$) catalysts.

양극산화에 의해 CP Ti와 Ti-10Ta-10Nb 합금 표면에 형성된 산화 피막의 형상 및 표면 특성 (Surface Characteristics of Oxide Film Prepared on CP Ti and Ti-10Ta-10Nb Alloy by Anodizing)

  • 김현승;이광민;이도재;박상원;이경구
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.6-10
    • /
    • 2007
  • In the present study, we investigated the formation of self-organized nanostructure oxide layers on CP Ti and Ti-10Ta-10Nb alloy in an electrolyte of 1M phosphoric acid and 1.5 wt% Hydrofluoric acid. The morphology of oxide film on substrate was observed using scanning electron microscopy and transmission electron microscopy The surface roughness of titanium oxide film was analyzed by atomic force microscopy and the crystalline of specimen was investigated using X-ray diffractometer. The results of this study showed that well-aligned titanium oxide nanotubes are formed with diameter of approx. 100nm and length of approx. 500nm with CP Ti. However, it is clear that TiTaNb alloy highly irregular structure with various diameters. Transmission electron microscope investigations show that the specimens were confirmed as amorphous. Such titanium oxide nanotubes are expected a well-adhered bioacitive surface layer on titanium substrate for orthopedics and dental implants.

The Effect of Plasma Gas Composition on the Nanostructures and Optical Properties of TiO2 Films Prepared by Helicon-PECVD

  • Li, D.;Dai, S.;Goullet, A.;Granier, A.
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850124.1-1850124.12
    • /
    • 2018
  • $TiO_2$ films were deposited from oxygen/titanium tetraisopropoxide (TTIP) plasmas at low temperature by Helicon-PECVD at floating potential ($V_f$) or substrate self-bias of -50 V. The influence of titanium precursor partial pressure on the morphology, nanostructure and optical properties was investigated. Low titanium partial pressure ([TTIP] < 0.013 Pa) was applied by controlling the TTIP flow rate which is introduced by its own vapor pressure, whereas higher titanium partial pressure was formed through increasing the flow rate by using a carrier gas (CG). Then the precursor partial pressures [TTIP+CG] = 0:027 Pa and 0.093 Pa were obtained. At $V_f$, all the films exhibit a columnar structure, but the degree of inhomogeneity is decreased with the precursor partial pressure. Phase transformation from anatase ([TTIP] < 0.013 Pa) to amorphous ([TTIP+CG] = 0:093 Pa) has been evidenced since the $O^+_2$ ion to neutral flux ratio in the plasma was decreased and more carbon contained in the film. However, in the case of -50 V, the related growth rate for different precursor partial pressures is slightly (~15%) decreased. The columnar morphology at [TTIP] < 0.013 Pa has been changed into a granular structure, but still homogeneous columns are observed for [TTIP+CG] = 0:027 Pa and 0.093 Pa. Rutile phase has been generated at [TTIP] < 0:013 Pa. Ellipsometry measurements were performed on the films deposited at -50 V; results show that the precursor addition from low to high levels leads to a decrease in refractive index.

나노 또는 마이크로 입자의 전사를 이용한 건식 접착제의 제조 및 특성 분석 (Fabrication and characterization of the nano- and micro-particles applied dry adhesives)

  • 유민지;;한석진;박재홍;김성룡
    • 접착 및 계면
    • /
    • 제20권1호
    • /
    • pp.23-28
    • /
    • 2019
  • 본 연구에서는 마이크로 또는 나노 입자 형상을 폴리디메틸실록산 (PDMS)에 전사시켜 건식접착제를 제조하고 특성에 대하여 고찰하였다. 20 nm, 40 nm, 70 nm의 직경을 가지는 구리 나노 입자형상과 $5{\mu}m$의 직경을 가지는 폴리메틸메타아크릴레이트 (PMMA) 마이크로 입자 형상을 전사시켜 PDMS 건식 접착제를 제조하였다. 입자의 종류 및 크기가 변화함에 따라 건식 접착제의 기계적 특성, 인장 접착강도, 표면 형상, 접촉각, 광학적 성질에 미치는 영향을 조사하였다. 20 nm 직경을 가지는 구리 나노 입자를 전사시켜 얻은 건식 접착제는 bare PDMS 필름에 비하여 300% 이상 향상된 인장 접착강도를 가졌다. 나노 입자를 전사시켜 얻은 큰 표면적 건식 접착제 구조가 높은 인장 접착강도를 부여하는 원인으로 추정된다. 본 연구결과는 나노 입자를 전사시키는 방법이 PDMS 건식 접착제의 제조에 있어 쉽고 효과적임을 시사한다.

Quantum Confinement Effect Induced by Thermal Treatment of CdSe Adsorbed on $TiO_2$ Nanostructure

  • Lee, Jin-Wook;Im, Jeong-Hyeok;Park, Nam-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.213-213
    • /
    • 2012
  • It has been known that quantum confinement effect of CdSe nanocrystal was observed by increasing the number of deposition cycle using successive ionic layer adsorption and reaction (SILAR) method. Here, we report on thermally-induced quantum confinement effect of CdSe at the given cycle number using spin-coating technology. A cation precursor solution containing $0.3\;M\;Cd(NO_3)_2{\cdot}4H_2O$ is spun onto a $TiO_2$ nanoparticulate film, which is followed by spinning an anion precursor solution containing $0.3\;M\;Na_2\;SeSO_3$ to complete one cycle. The cycle is repeated up to 10 cycles, where the spin-coated $TiO_2$ film at each cycle is heated at temperature ranging from $100^{\circ}C$ to $250^{\circ}C$. The CdSe-sensitized $TiO_2$ nanostructured film is contacted with polysulfide redox electrolyte to construct photoelectrochemical solar cell. Photovoltaic performance is significantly dependent on the heat-treatment temperature. Incident photon-to-current conversion efficiency (IPCE) increases with increasing temperature, where the onset of the absorption increases from 600 nm for the $100^{\circ}C$- to 700 nm for the $150^{\circ}C$- and to 800 nm for the $200^{\circ}C$- and the $250^{\circ}C$-heat treatment. This is an indicative of quantum size effect. According to Tauc plot, the band gap energy decreases from 2.09 eV to 1.93 eV and to 1.76 eV as the temperature increases from $100^{\circ}C$ to $150^{\circ}C$ and to $200^{\circ}C$ (also $250^{\circ}C$), respectively. In addition, the size of CdSe increases gradually from 4.4 nm to 12.8 nm as the temperature increases from $100^{\circ}C$ to $250^{\circ}C$. From the differential thermogravimetric analysis, the increased size in CdSe by increasing the temperature at the same deposition condition is found to be attributed to the increase in energy for crystallization with $dH=240cal/^{\circ}C$. Due to the thermally induced quantum confinement effect, the conversion efficiency is substantially improved from 0.48% to 1.8% with increasing the heat-treatment temperature from $100^{\circ}C$ to $200^{\circ}C$.

  • PDF