• Title/Summary/Keyword: 1D hydraulic model

Search Result 192, Processing Time 0.026 seconds

Modeling and Simulation of A Small Hydraulic Actuation System for the Tactical Missile (전술유도무기용 소형 유압식 구동장치의 모델링 및 시뮬레이션)

  • Lee, Doyun;Lee, Hosung;An, Sungyong;Park, Yeonjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.349-357
    • /
    • 2017
  • If an actuation system of the tactical missile is required very fast response time on conditions of short operating time and big loads on the actuator, we would prefer to adopt a small hydraulic system. In this paper, a mathematical model is proposed to analyze and simulate the small hydraulic actuation system. The mathematical model consists of a high pressure vessel model, a pressure regulator model, a hydraulic reservoir model and a actuator model. The suggested model is validated by comparison of simulation results with experimental data. The simulation results show that the mathematical model could be useful for designing a hydraulic actuation system.

Development of GUI System for Coupling of Multi-Dimensional Hydraulic Models (다차원수리모형을 이용한 연계모의 GUI시스템 개발)

  • Ahn, Jung Min;Lyu, Siwan
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.353-363
    • /
    • 2012
  • In order to operate the hydraulic structures efficiently for reducing flood damage after 4 Major River Restoration Project, it is essential to obtain enough hydraulic information with certain reliability. A coupled modeling system, providing spatial hydraulic information, for multi-dimensional hydraulic models was developed to complement 1-D hydraulic modeling. Developed system can offers spatial and grid unit information as well as line and section unit information from 1-D modeling. It is considered that the coupled modeling system can be used to provide various kinds of hydraulic information for river management and treatment.

Dimensional Characteristics of Hydraulic Actuator Curve based on 3D Printing Filament Materials (3D 프린팅 필라멘트 재료에 따른 유압액츄에이터 커브의 치수 특성)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-79
    • /
    • 2021
  • In this paper, the 3D shape of a hydraulic actuator cover was 3D printed by applying two materials, namely PLA and ABS. Subsequently, the printed shape was scanned to analyze the material properties, dimensional change characteristics, dimensions, and scan shape as a real model. To compare and analyze material-specific 3D printing dimensions, a non-contact mobile laser scanner was used to scan a portion of the printed hydraulic actuator cover and the final alignment shape of the 3D printed part was studied on the basis of the design model.

Analysis of Groundwater Flow Characterstics and Hydraulic Conductivity in Jeju Island Using Groundwater Model (지하수 모델을 이용한 제주도 지하수 유동특성 및 수리전도도 분석)

  • Kim, Min-Chul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1157-1169
    • /
    • 2019
  • We used numerical models to reliably analyze the groundwater flow and hydraulic conductivity on Jeju Island. To increase reliability, improvements were made to model application factors such as hydraulic watershed classification, groundwater recharge calculation by precipitation, hydraulic conduction calculation using the pilot point method, and expansion of the observed groundwater level. Analysis of groundwater flow showed that the model-calculated water level was similar to the observed value. However, the Seogwi and West Jeju watersheds showed large differences in groundwater level. These areas need to be analyzed by segmenting the distribution of the hydraulic conductivity. Analyzing the groundwater flow in a sub watershed showed that groundwater flow was similar to values from equipotential lines; therefore, the reliability of the analysis results could be improved. Estimation of hydraulic conductivity distribution according to the results of the groundwater flow simulation for all areas of Jeju Island showed hydraulic conductivity > 100 m/d in the coastal area and 1 - 45 m/d in the upstream area. Notably, hydraulic conductivity was 500 m/d or above in the lowlands of the eastern area, and it was relatively high in some northern and southern areas. Such characteristics were found to be related to distribution of the equipotential lines and type of groundwater occurrence.

Flood Risk for Power Plant using the Hydraulic Model and Adaptation Strategy

  • Nguyen, Thanh Tuu;Kim, Seungdo;Van, Pham Dang Tri;Lim, Jeejae;Yoo, Beomsik;Kim, Hyeonkyeong
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 2017
  • This paper provides a mathematical approach for estimating flood risks due to the effects of climate change by developing a one dimensional (1D) hydraulic model for the mountainous river reaches located close to the Yeongwol thermal power plant. Input data for the model, including topographical data and river discharges measured every 10 minutes from July $1^{st}$ to September $30^{th}$, 2013, were imported to a 1D hydraulic model. Climate change scenarios were estimated by referencing the climate change adaptation strategies of the government and historical information about the extreme flood event in 2006. The down stream boundary was determined as the friction slope, which is 0.001. The roughness coefficient of the main channels was determined to be 0.036. The results show the effectiveness of the riverbed widening strategy through the six flooding scenarios to reduce flood depth and flow velocity that impact on the power plant. In addition, the impact of upper Namhan River flow is more significant than Dong River.

Analysis on Dimensional Stability of Porosity Soil Block for Vegetation Reinforcement (식생강화를 위한 다공성 소일 블록의 치수안정성 해석)

  • Park, Sang Woo;Ahn, Tae Jin;Ahn, Sang Ho;Kwon, Soon Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.91-103
    • /
    • 2013
  • In this Research, in order to improve problems of not enough technical validation and structural and hydraulic stability evaluation when nature-friendly revetment block is applied to field, hydraulic stability evaluation according to hydraulic behavior change of porosity soil block for vegetation reinforcement that secures ecological function was reviewed. By selecting object section, numerical analysis and hydraulic model experiments were performed; for numerical analysis, by using 1-dimensional numerical analysis model HEC-RAS and 2-dimensional numerical analysis RMA-2, one-dimensional(1D) and two-dimensional(2D) numerical analysis were performed; by applying Froude's similarity law, reduced-scale hydraulic model experiments according to vegetation existence were performed. In hydraulic model experiment, for validity of experiment result, the result of velocity and tractive force of reduced-scale hydraulic model experiments was converted to prototype so that it can be compared and reviewed under the same condition of one-dimensional(1D) and two-dimensional(2D) numerical analysis result; as a result, it was confirmed that comparatively united result appeared, and by comparing prototype-converted tractive force result with revetment's allowable tractive force coming from an existing research, block's hydraulic stability was suggested.

Study on the Flow Characteristics at Natural Curved Channel by 2D and 3D Models (2·3차원 모형을 이용한 자연하도 만곡부에서의 흐름특성 연구)

  • Ahn, Seung-Seop;Jung, Do-Joon;Lee, Sang-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.471-478
    • /
    • 2012
  • In this study, the flow characteristic analysis at the curved-channel of the actual channel section is compared and reviewed using the 2D RMA-2 model and the 3D FLOW-3D model. the curve section with curve rate 1.044 in the research section is analyzed applying the frequency of he project flood of 100 years. According to the result, the issue for the application of the FLOW-3D Model's three-dimensional numeric analysis result to the actual river is found to be reviewed with caution. Also, application of the 3D model to the wide basin's flood characteristic is determined to be somewhat risky. But, the applicability to the hydraulic property analysis of a partial channel section and the impact analysis and forecast of hydraulic structure is presumed to be high. In addition, if the parameters to reflect the vegetation of basin and the actual channel, more accurate topological measurement data and the topological data with high closeness to the current status are provided, the result with higher reliability is considered to be drawn.

Development of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 개발)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.3
    • /
    • pp.314-321
    • /
    • 2020
  • In this work, a preliminary design of an inlet guide vane and runner for developing a 2.5 kW hydraulic turbine was conducted by using computational fluid dynamic analysis. Three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used to analyze the fluid flow in the hydraulic turbine. The hexahedral grid system was used to construct computational domain, and the grid dependency test was performed to obtain the optimal grid system. Velocity triangle diagram considering the flow angles of the inlet guide vane and runner was analyzed to obtain a basic geometry of the inlet guide vane and runner. Through modification of the preliminary design, the hydraulic performances of the turbine have improved under overall drop conditions. Especially, the efficiency and power of the turbine increased by 0.95% and 1.45%, respectively, compared to those of the reference model.

Improvement of QUAL2E Model using Nonuniform Flow Analysis (부등류해석을 이용한 QUAL2E 모형의 개선)

  • Kim, Sang Ho;Choi, Hyun Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1144-1150
    • /
    • 2006
  • Recently, as water pollution accidents in rivers have increased, there is an increased interest in water quality forecast with accurate simulation. QUAL2E model, widely used for water quality analysis, uses the same hydraulic characteristics, such as depth and velocity, in a reach. The flow of the river is changed by various hydraulic constructions or by topography in a real river channel. In this study, a hydraulic connection module is developed to consider flow variations of river channels in QUAL2E model. The module uses the simulations results of non-uniform flow of a 1-D hydraulic model such as DWOPER or HEC-RAS. The improved QUAL2E model with this module was applied to a downstream section of Paldang Dam on the Han River. The results show the variation of water quality very well in a reach where flowing vary abruptly, like the Jamsil submerged weir.

A Study on Phosphorus Loading model for Eutrophication Response in the Yongsan Lake (영산호의 부영양화 평가를 위한 인부하모델의 검토)

  • 류일광;이치영
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.97-104
    • /
    • 2000
  • The purpose of this is made an examination of phosphorus loading model for eutrophication response in the Yongsan lake. For the model, we measured the total amount of nutrients derived from the Yongsan river watershed, inflow rate to the Yongsan lake, water quality, and water budget from January to December in 1999. The total amount of precipitation in the Yongsan river watershed was 4,951.7$\times$10$^{6}$ ㎥/y and inflow amount was 2,569.7$\times$10$^{6}$ ㎥/y, therefore the outflow rate of the Yongsan river watershed was 51.9%. The develop loading of total nitrogen was 86,928.1kg/d and that of total phosphorus was 22,007.6kg/d at the Yongsan river watershed, But, as the inflow loading of total nitrogen was 33,962kg/d and the inflow loading of total phosphorus was 2,218kg/d to the Yongsan lake. so each infolw rate was 39.0% and 10.1%. The hydraulic residence time was 34days, total phosphorus loading [L(P)] on the surface area was 23.398g/㎥/y, the hydraulic load( $Q_{s}$) of inflow water was 74.269m/y, the reserve rate of phosphorus in the lake was 0.359, and the settinh velocity of phosphorus was 0.114m/d at the Yongsan lake. Mathematical model of phosphorus loading to estimate the responses of eutrophication at the Yongsan lake is [ $P_{j}$] = 0.838 [L(P)/Q.(1+√ $T_{w}$)$^{-1}$ ] . ] . .

  • PDF