• Title/Summary/Keyword: 1Cr1Mo1/4V Steel

Search Result 46, Processing Time 0.02 seconds

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

Study on Creep Damage Model of 1Cr1Mo1/4V Steel for Turbine Rotor (1Cr1Mo1/4V 터빈 로터강의 크리프 손상 모델에 관한 연구)

  • Choi, Woo-Sung;Fleury, Eric;Song, Gee-Wook;Kim, Bum-Shin;Chang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.447-452
    • /
    • 2011
  • It is well known that the dominant damage mechanisms in high-temperature steam turbine facilities such as rotor and casing are creep and fatigue damages. Even though coupling of creep and fatigue should be considered while predicting the life of turbine facilities, the remaining life of large steam turbine facilities is generally determined on the basis of creep damage because the turbines must generate stable base-load power and because they are operated at a high temperature and pressure for a long time. Almost every large steam turbine in Korea has been operated for more than 20 years and is made of steel containing various amounts of principal alloying elements nickel, chromium, molybdenum, and vanadium. In this study, creep damage model of 1Cr1Mo1/4V steel for turbine rotor is proposed and that can assess the high temperature creep life of large steam turbine facilities is proposed.

Evaluation Technology of Degradation of Metallic Alloy using Electrical Resistivity (전기비저항을 이용한 금속합금 열화도 평가기술)

  • Nahm, Seung-Hoon;Yu, Kwang-Min;Ryu, Jae-Cheon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.532-541
    • /
    • 2001
  • Developments of nondestructive evaluation techniques for reduction of strength or toughness by aging of material have been carried out, and the method using electrical resistivity is one of them. In this study, to examine the application of electrical resistivity to the evaluation of degradation of metallic alloy, ten different non-magnetic materials were selected as test materials. Electrical resistivities measured by DC two-point probe method and those measured by non-contact type eddy current method were compared with each other. In addition, to examine the application possibility of four-point probe technology in field, the electrical resistivities for 1Cr-lMo-0.25V steel measured by DC two-point probe method and four-point probe method were compared with each other Differences between two measured values for the 1Cr-1Mo-0.25V steel were 0.6%. Therefore, the four-point probe method can be applied to the estimation of the degradation of metallic alloy. ect.

  • PDF

Fatigue Strength Characteristics of 1Cr-1Mo-0.25V Steel by Improved TiN Coated Processes (TiN코팅 공정 개선에 의한 1Cr-1Mo-0.25V 강재의 피로강도 특성)

  • 서창민;김경렬
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.49-60
    • /
    • 1997
  • This paper deals with the effect of coating layer on the fatigue strength of TiN coated 1Cr-1Mo-0.25V steel prepared by using the arc ion plating (AIP) process, in which it was characterized by the presence of extractor grid (ion filter). The rotary bending fatigue tests were carried out under room air conditions, and the fatigue crack initiation and growth bwhavior were observed by using plastic replica method. As experimental results, it was found that the obvious improvement of fatigue life at lower stress region was confirmed in TiN coated specimen processed with ion filter. It was also exlained that the increase of fatigue life in the case of an improved AIP process with ion filter was attributed to the retardation of crack initiation of the substrate surface due to hard coating layer, more densly formed with the reduced size and density of droplets.

  • PDF

Degradation Evaluation of Aged 1Cr-1Mo-0.25V Steel Using Coercive Force (보자력을 이용한 1Cr-1Mo-0.25V강 인공시효재의 열화도 평가)

  • Ryu, K.S.;Nahm, S.H.;Kim, Y.I.;Yu, K.M.;Son, D.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.288-293
    • /
    • 1999
  • The integrity of the turbine rotors can be assessed by the coercive force and Vickers hardness of the aged rotors at service temperature. The coercive force measurement system was constructed in order to evaluate material degradation nondestructively. The test specimen was 1Cr-1Mo-0.25V steel used widely for turbine rotor material, and then the seven kinds of specimens with different degradation levels were prepared by the isothermal heat treatment at $630^{\circ}C$. The coercive force of the test materials was measured at room temperature. Vickers hardness and coercive force decreased with the increase of degradation. The relationship between Vickers hardness and coercive force was investigated. The degradation of test material may be determined nondestructively by the relationship between Vickers hardness and coercive force.

  • PDF

Evaluation of PWHT cracking susceptibility of the Cr-Mo steel alloys (Cr-Mo 합금강의 후열처리 균열 감수성 평가)

  • Kim, Sang-Jin;Kim, Ki-Soo;Lee, Young-Ho
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.200-210
    • /
    • 2006
  • This C-ring test, normally employed for evaluating susceptibility to stress-corrosion cracking, was determined to be a suitable small scale test to evaluate PWHT(Post-Weld Heat Treatment) cracking susceptibility. This test is possible to incorporate an actual weld, to introduce a notch into the coarse grained HAZ(Heat Affected Zone), to load the coarse grained HAZ any level of stress ad, most importantly, since the C-ring is an approximately constant strain type test, the stress decreases with time at temperature in a manner similar to that of an actual steel weldment. The procedure employed in making the C-ring was presented in the experimental procedure section, however, several points deserve further discussion. The walls of the weld groove are made along radial lines form the center of th var in order to obtain an HAZ which is oriented perpendicular to the walls of the machined C-ring. Therefore, the plane of maximum stress will be aligned through the HAZ and, therefore, crack propagation will not be forced to deviate form the plane of maximum stress in order to remain in the coarse grained HAZ as is the case with the Y groove test.

A Program Development of Life Prediction Simulation for Multi-Surface Cracks on the Finite Plate (무한 평면체에 존재하는 복수 표면균열의 성장에 대한 수명예측용 시뮬레이션 개발에 관한 연구)

  • 황남성;서창민;남승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.61-75
    • /
    • 1997
  • The social demand urges us to use some equipments and structures in high temperature environment. By this occasion, the necessity of studying the fatigue crack growth is an important aspect of new materials. However, the present situation is rarely to accumulate the fatigue data. Especially, 1Cr-1Mo-0.25V steel and 304 stainless steel have been increased to be used under the severe condition of high temperature. And so, the fatigue estimation of those materials is important and appropriate. Fatigue tests have been carried out to examine the crack initiation, growth behaviour for the small fatigue crack of 1Cr-1Mo-0.25V steel and 304 stainless steel at room temperature and 538^{\circ}C$. The remote measurement system which has many merits of checking and saving the image for detailed examination was applied to closely detect the crack length. Generally, the fatigue crack initiated in the form of multiple cracks and grew each other. And then it coalesced to become a major crack. The major crack governed the rest of the fatigue life. In the growing process, each peripheral cracks interact and grow for a certain period. After then, it coalesced and fractured. On the basis of the above experimental data for the small crack, a simulation program was developed to predict the residual life time and to estimate the integrity of machine elements and structures. At the same time, the simulation was extended to 1Cr-1Mo-0.25V steel. The simulation results have shown a good agreement to those of the experimental ones for both materials of 1Cr-1Mo-0.25V steel and 304 stainless steel with small cracks. The NASCRAC has applied to compare the fatigue life with the experimental results. And so, it can be said that the simulation program is valuable tools to the industrial fields.

  • PDF

Rotated Bending Fatigue Strength in Aged 1Cr-1Mo-0.25V Steel at Elevated Temperature (시효열화시킨 1Cr-1Mo-0.25V 강의 고온화의 회전굽힘 피로강도에 관한 연구)

  • Suh, Chang-Min;Huh, Jeong-Hoon;Namh, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2819-2832
    • /
    • 1996
  • The estimation of the remaining life for the aged components in power plant as well as chemical and petroleum plants has been recently concerned. The raw materials used in this study are the 1Cr-1Mo-0.25V steel which intensified P and S compositions along with the nominal compositions of ASTM A 470 standard. Five kinds of specimens with the different degradation levels were prepared by isothermal aging heat treatment at 630.deg.C. The mechanical properties and rotated bending fatigue strength of virgin and aged 1Cr-1Mo-0.25V steel have been investigated through the hardness, tensile, fatigue test, SEM fractograph and EDS analysis at 538.deg.C and room temperature, respectively. Thus the data of aged specimens were compared with those of virgin specimen to evaluate the aging effects. The main results obtained in this study are as follows ; The decrease of the yield and tensile strength due to degradation was distinguished until 50, 000hrs simulated service time. And it was confirmed that the considerable amount of P, Mn, Cr and S was precipitated at the grain boundary of aged material through the SEM and EDS analysis. The rotated bendingd fatigue strength at 538.deg.C of virgin, 25, 000, 50, 000, 75, 000 and 100, 000 hrs aged material was decreased 44.6 %, 49.6 %, 51.5 %, 52.4% and 53.8% than that of virgin material at 10$_{7}$cycles of room temperature, respectively. The major cracks of virgin and aged materials mainly initiated at the inclusions including Si, P and Mn compositions which were located at the outer periphery of the specimen.n.

A Study on Degradation Behavior of 1Cr-1Mo-0.25V Steel (1Cr-1Mo-0.25V 강의 열화거동에 관한 연구)

  • 석창성;구재민;김동중;안하늘;박은수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.8-14
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with time of service exposure in the high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, accelerated aging technique are needed to estimate and analyse the material degradation. In the this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And tensile test, $k_{IC}$ test, hardness test and Scanning Electron Microscope analysis were performed in order to evaluate the degradation of 1Cr-1Mo-0.25V steels.

  • PDF