• Title/Summary/Keyword: 17-dione

Search Result 43, Processing Time 0.028 seconds

Conversion of Plant Sterols to Androsta-4-ene-3,17-dione by a mutant of Mycobacterium sp. NRRL B-3805 (Mycobacterium종 (NRRL B-3805)의 변이종에 의한 식물스테롤의 androsta-4-ene-3,17-dione(AD)으로의 전환)

  • 이강업
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.351-363
    • /
    • 1990
  • A mutant was selected by NTG treatment of Mycobacterium sp. NRRL B-3805, which was capable of degrading plant sterol to androsta-4-ene-3, 17-dione and yields was higher than NRRL B-3805. Also this mutant produced androst-4-ene-3, 17-dione faster than NRRL B-3805. It described the mode of sitosteroidal degradation, and the interrelation between cell membrane and its attachment to substrate during the sterol degradation process by this mutant and it was compared with Mvcobacterium sp. NRRL B-3805.

  • PDF

The Conversion of Lithocholic Acid into 5$\beta$-Androstan-3, 17-dione in the Cell-free System of Mycobacterium sp. NRRL B-3805

  • Lee, Kang-Man;Park, Hye-Kyung
    • Archives of Pharmacal Research
    • /
    • v.14 no.3
    • /
    • pp.261-265
    • /
    • 1991
  • In a microbial cell-free extract system, side chain cleavage on various sterols and steroids was tested. The cell-free extracts of Mycobacterium sp. NRRL B-3805 showed the side chain cleavage activity on lithocholic acid to form 5$\beta$-androstan-3.17-dione. The properties of the activity were examined.

  • PDF

Degradation Mechanism of Cholesterol and Its Derivatives by Microorganisms. II Iso of-Hydronyandrost-4-ene-3,17-dione (미생물에 의한 cholesterol과 그유도체의 분해기구 II 19-Hydronyandrost-4-ene-3, 17-dione의 분리)

  • 이상섭
    • YAKHAK HOEJI
    • /
    • v.12 no.3_4
    • /
    • pp.76-84
    • /
    • 1968
  • When 19-hydroxycholesterol acetate was added into CSD-10 in Nutrient Broth or in a mineral salts medium consisting of KH$_{2}$PO$_{4}$(0.1%), $K_{2}$HPO$_{4}$(0.1%), NH$_{4}$NO$_{3}$(0.1%), MgSO$_{4}$(0.02%), CaCl$_{2}$(0.002%), and FeCl$_{3}$(0.005%), a substantial amount of 19-hydroxyandrost-4-ene-3,17-dione was accumulated prior to accumulation of estrone. From this result and all of previous works, a tentative degradation pathway of 19-hydroxycholesterol acetate to estrone by CSD-10 was derived. 19-hydroxyandrost-4-ene-3,17-dione seems to be an attractive intermediate for the synthesis of 19-norsteroids.

  • PDF

Isolation and Biological Activities of an Alkaloid Compound (3-methylcanthin-5, 6-dione) from Picrasma quassiodes (D. Don) Benn.

  • Yin, Yu;Lee, Seok-Ki;Wang, Myeong-Hyeon
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.5-9
    • /
    • 2011
  • An alkaloid, 3-methylcanthin-5, 6-dione, was isolated from the stem of Picrasma quassioides (D. Don) Benn. and characterized by comprehensive analyses of its 1D and 2D NMR spectra. It was also evaluated for its cytotoxic activity in vitro against three human cancer cell lines (MDA-MB-231, HT-29 and NCI-N87), using MTT assays. We found that 3-methylcanthin-5, 6-dione exhibited significant anti-inflammatory activity via inhibiting NO production induced in LPS-stimulated murine macrophage RAW264.7 cells. The antioxidant activity of 3-methylcanthin-5, 6-dione was measured by DPPH free radical scavenging assays, hydroxyl radical scavenging assays and reducing power assays. Our results showed that 3-methylcanthin-5, 6-dione has significant biological activities.

Quantitative Analysis of 1,4-Androstadiene-3,17-Dione in Fermentation Broth (발효액중의 1,4-Androstadiene-3,17-Dione의 정량법)

  • Lee, Kang-Man;Bae, Moo
    • YAKHAK HOEJI
    • /
    • v.31 no.6
    • /
    • pp.402-404
    • /
    • 1987
  • Fermentation processes have been employed to produce 17-ketosteroids from sterol with chelator of Fe$^{2+}$ such as $\alpha$, ${\alpha}'$-dipyriyl. To analyze the products of sterol fermentation, we developed a simple TLC method without interference of the chelator $\alpha$, ${\alpha}'$-dipyridyl, using Ag$^+$ band on TLC plate.

  • PDF

Production of 1,4-Androstadiene-3,17-dione by a Mutant Strain of Brevibacterium lipolyticum (Brevibacterium lipolyticum 변이주에 의한 1,4-Androstadiene-3, 17-Dione의 생성)

  • Choi, In-Wha;Lee, Kang-Man
    • YAKHAK HOEJI
    • /
    • v.33 no.6
    • /
    • pp.365-371
    • /
    • 1989
  • Microbiological conversion of sterols to 17-ketosteroids has been recognized as a source for commercial preparation of steroidal drugs. In order to develop bacterial strains and process with Brevibacterium lipolyticum IAM 1398 capable of converting cholesterol to 1,4-Androstadiene-3,17-dione (ADD) at about 27% yield, we studied on strain improvement, fermentation condition and whole cell immobilization. By using UV and/or NTG as mutagens, a mutant to convert cholesterol to ADD with higher yield than 60% was selected. Better production of ADD was manifested in the case of maltose used as a supplemental carbon source, and yeast extract or soytone as a nitrogen source. Addition of tween 80 (0.05%) as a surfactant beneficial for increasing the productivity. The optimal initial pH of the medium was 6.5 and optimal culture temperature was $30^{\circ}C$. Whole cell immobilization by using carrageenan, agar, alginate and acrylamide was carried out and the activity of conversion was tested. In the case of carrageenan and agar, immobilized cells were active for at least two cycles of fermentation.

  • PDF

Microbial Conversion of Cholesterol to 4-Androstene-3,17-dione by Intermittent Addition of Substrate (간헐적으로 첨가된 Cholesterol로부터 미생물전환에 의한 4-Androstene-3,17-dione의 생산)

  • Choi, S.K.;Kim, H.S.;Park, Y.H.
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.187-192
    • /
    • 1988
  • Production of 4-androstene-3,17-dione(AD) from cholesterol by microbial conversion was investigated. To facilitate the solubilization of cholesterol in the fermentation broth, ethanol was used as an organic solvent. Inhibition on cell growth by ethanol was observed to be negligible upto 2% (V/V) concentration. Microbial conversion was successfully carried out with high yield when the cholesterol was added at early logarithmic growth phase with pH control at 7.0. In order to improve the process productivity, bioconversion was conducted at various mode of cholesterol addition ; 0.1% (V/W) of cholesterol was found to be most appropriate for solubilization in ethanol and was added intermittently. When added three time(total 3 g/$\ell$), overall bioconversion yield reached upto 65% while single addition of same amount of cholesterol (3 g/$\ell$) yielded about 40% conversion.

  • PDF

Microbial Degradation of Plant Sterol to Steroidol Intermediates by a Mutant of Mycobacterium sp (Mycobacterium sp. 변이주에 의한 식물스테롤의 스테로이드 중간체로의 미생물적 분해)

  • 이강업;제임스쥬
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 1990
  • A mutant of Mycobacterium sp. has been isolated which is capable of degrading cholesterol and plant sterol to androst-4-ene-3, 17-dione and 9-hydroxyandrostene-3, 17-dione. Also this mutant hydroxylated the steroidal nucleus at the 9 $\alpha$ position. No ring degradation inhibitory agents are required for these processes.

  • PDF