• 제목/요약/키워드: 17-demethoxy-reblastatin

검색결과 2건 처리시간 0.017초

Anticancer Effects of the Hsp90 Inhibitor 17-Demethoxy-Reblastatin in Human Breast Cancer MDA-MB-231 Cells

  • Zhao, Qing;Wu, Cheng-Zhu;Lee, Jae Kyoung;Zhao, Su-Rong;Li, Hong-Mei;Huo, Qiang;Ma, Tao;Zhang, Jin;Hong, Young-Soo;Liu, Hao
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권7호
    • /
    • pp.914-920
    • /
    • 2014
  • Triple-negative breast cancer (TNBC) possesses a higher rate of distant recurrence and a poorer prognosis than other breast cancer subtypes. Interestingly, most of the heat shock protein 90 (Hsp90) client proteins are oncoproteins, and some are closely related to unfavorable factors of TNBC patients. 17-Demethoxy-reblastatin (17-DR), a novel non-benzoquinone-type geldanamycin analog, exhibited potent Hsp90 ATPase inhibition activity. In this study, the anticancer effects of 17-DR on TNBC MDA-MB-231 cells were investigated. These results showed that 17-DR inhibited cell proliferation, induced apoptosis, and suppressed cell invasion and migration in the MDA-MB-231 cells. Down-regulation of the key Hsp90-dependent tumor-driving molecules, such as RIP1 and MMP-9, by 17-DR may be related to these effects. Taken together, our results suggest that 17-DR has potential as a therapeutic agent for the treatment of TNBC.

New Geldanamycin Analogs from Streptomyces hygroscopicus

  • Wu, Cheng-Zhu;Jang, Jae-Hyuk;Ahn, Jong Seog;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1478-1481
    • /
    • 2012
  • Geldanamycin (GM) and its analogs are important anticancer agents that inhibit heat shock protein (Hsp) 90, which is a major chaperone protein in cancer cells. Accordingly, based on interest in obtaining novel natural GM derivatives, the potential of Streptomyces hygroscopicus JCM4427, a GM producer, was explored for novel natural GM derivative(s), resulting in the discovery of new GM analogs as a biosynthetic shunt product and intermediates from its fermentation broth. In this study, the fermentation, isolation, structure determination, and biological activity of the compounds, two new tetracyclic thiazinogeldanamycin (1) and 19-hydroxy-4,5-dihydrogeldanamycin (3), together with the three known 4,5-dihydrothiazinogeldanamycin (2), reblastatin (4), and 17-demethoxy-reblastatin (5), are described.