• 제목/요약/키워드: 16s rRNA Sequencing

검색결과 519건 처리시간 0.03초

Characterization of Cholesterol Lowering Lactic Acid Bacteria Isolated from Palm Wine and Maize Beer and Assessment of Their Use in the Production of Probiotic Papaya Juice

  • Bertrand Tatsinkou Fossi;Dickson Ebwelle Ekabe;Liliane Laure Toukam Tatsinkou;Rene Bilingwe Ayiseh;Frederic Tavea;Pierre Michel Jazet
    • 한국미생물·생명공학회지
    • /
    • 제51권2호
    • /
    • pp.191-202
    • /
    • 2023
  • Elevated serum cholesterol is a main risk factor for heart disorders. Most probiotic products administered to lower cholesterol are dairy products which are not suitable for lactose-intolerant individuals. In this study, we assessed the cholesterol-lowering efficacy of LAB isolated from traditionally fermented drinks in diet-induced rats and determine their efficacy in the production of non-dairy, probiotic formulations using papaya juice. LAB were isolated from palm wine and corn beer on MRS agar using a pour-plate technique. Identification was carried out using 16S rRNA gene sequencing. A hypercholesterolemia model in which diet-induced Wistar albino rats were assigned into four groups was established. Oral gavage was carried out for 30 days. On the 31st day, the rats were dissected and the serum lipid profile was analyzed using biochemical kits. A 106 cfu/ml of a 24-h-old culture of selected lactobacilli was used to inoculate papaya juice and incubated at 37℃. Microbial and chemical changes were assessed during papaya fermentation and after four weeks of cold storage. Two selected isolates (Pw1 and Cb4) had in vitro cholesterol reduction of > 80%. These two isolates lowered lipid profile (triglyceride, total cholesterol, LDL-c) significantly, and increased HDL-c levels (p < 0.5) in the rat sera. Phylogenetic analysis showed that Pw1 was 98.86% similar to Limosilactobacillus fermentum, while Cb4 was 99.54% similar to Enteroccocus faecium. Both strains fermented papaya juice with cell viability reaching 8.92 × 108 cfu/ml and 25.3 × 108 cfu/ml respectively, and were still viable after 4 weeks of cold storage.

송지호 해안 대수층 미생물 군집의 풍부도 및 다양성 (Abundance and Diversity of Microbial Communities in the Coastal Aquifers in Songji Lagoon, South Korea)

  • 이정윤;김동훈;전우현;문희선
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권5호
    • /
    • pp.12-24
    • /
    • 2023
  • The Songji lagoon is brackish environment with a mixture of saline and fresh water, and the interaction of groundwater-lagoon water creates a physicochemical gradient. Although some studies have been conducted on the hydrological and geochemical characteristics of the Songji lagoon, microbial ecological studies have not yet been conducted. In this study, we investigated the effect of groundwater and surface water interaction on water quality as well as microbial community changes in the Songji Lagoon using 16S rRNA gene sequencing. Hydrochemical analyses show that samples were classified as 5 hydrochemical facies (HF) and hydrochemical facies evolution (HFE) revealed the intrusion phase was more dominant (57.9%) than the freshening phase (42.1%). Higher microbial diversity was found in freshwater in comparison to saline water samples. The microbial community at the phylum level shows the most dominance of Proteobacteria with an average of 37.3%, followed by Bacteroidota, Actinobacteria, and Patescibacteria. Heat map analyses of the top 18 genera showed that samples were clustered into 5 groups based on type, and Pseudoalteromonas could be used potential indicator for seawater intrusion.

Subtype-Based Microbial Analysis in Non-small Cell Lung Cancer

  • Hye Jin Jang;Eunkyung Lee;Young-Jae Cho;Sang Hoon Lee
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권4호
    • /
    • pp.294-303
    • /
    • 2023
  • Background: The human lung serves as a niche for a unique and dynamic bacterial community related to the development and aggravation of multiple respiratory diseases. Therefore, identifying the microbiome status is crucial to maintaining the microecological balance and maximizing the therapeutic effect on lung diseases. Therefore, we investigated the histological type-based differences in the lung microbiomes of patients with lung cancer. Methods: We performed 16S rRNA sequencing to evaluate the respiratory tract microbiome present in bronchoalveolar lavage fluid. Patients with non-small cell lung cancer were stratified based on two main subtypes of lung cancer: adenocarcinoma and squamous cell carcinoma (SqCC). Results: Among the 84 patients analyzed, 64 (76.2%) had adenocarcinoma, and 20 (23.8%) had SqCC. The α- and β-diversities showed significant differences between the two groups (p=0.004 for Chao1, p=0.001 for Simpson index, and p=0.011 for PERMANOVA). Actinomyces graevenitzii was dominant in the SqCC group (linear discriminant analysis [LDA] score, 2.46); the populations of Haemophilus parainfluenza (LDA score, 4.08), Neisseria subflava (LDA score, 4.07), Porphyromonas endodontalis (LDA score, 3.88), and Fusobacterium nucleatum (LDA score, 3.72) were significantly higher in the adenocarcinoma group. Conclusion: Microbiome diversity is crucial for maintaining homeostasis in the lung environment, and dysbiosis may be related to the development and prognosis of lung cancer. The mortality rate was high, and the microbiome was not diverse in SqCC. Further large-scale studies are required to investigate the role of the microbiome in the development of different lung cancer types.

Comparative analysis of the pig gut microbiome associated with the pig growth performance

  • Jun Hyung Lee;San Kim;Eun Sol Kim;Gi Beom Keum;Hyunok Doo;Jinok Kwak;Sriniwas Pandey;Jae Hyoung Cho;Sumin Ryu;Minho Song;Jin Ho Cho;Sheena Kim;Hyeun Bum Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.856-864
    • /
    • 2023
  • There are a variety of microorganisms in the animal intestine, and it has been known that they play important roles in the host such as suppression of potentially pathogenic microorganisms, modulation of the gut immunity. In addition, the gut microbiota and the livestock growth performance have long been known to be related. Therefore, we evaluated the interrelation between the growth performance and the gut microbiome of the pigs from 3 different farms, with pigs of varied ages ready to be supplied to the market. When pigs reached average market weight of 118 kg, the average age of pigs in three different farms were < 180 days, about 190 days, and > 200 days, respectively. Fecal samples were collected from pigs of age of 70 days, 100 days, 130 days, and 160 days. The output data of the 16S rRNA gene sequencing by the Illumina Miseq platform was filtered and analyzed using Quantitative Insights into Microbial Ecology (QIIME)2, and the statistical analysis was performed using Statistical Analysis of Metagenomic Profiles (STAMP). The results of this study showed that the gut microbial communities shifted as pigs aged along with significant difference in the relative abundance of different phyla and genera in different age groups of pigs from each farm. Even though, there was no statistical differences among groups in terms of Chao1, the number of observed operational taxonomic units (OTUs), and the Shannon index, our results showed higher abundances of Bifidobacterium, Clostridium and Lactobacillus in the feces of pigs with rapid growth rate. These results will help us to elucidate important gut microbiota that can affect the growth performance of pigs.

Association between LEPR Genotype and Gut Microbiome in Healthy Non-Obese Korean Adults

  • Yoon Jung Cha;In Ae Chang;Eun-Heui Jin;Ji Hye Song;Jang Hee Hong;Jin-Gyu Jung;Jung Sunwoo
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.146-153
    • /
    • 2024
  • The LEPR (leptin receptor) genotype is associated with obesity. Gut microbiome composition differs between obese and non-obese adults. However, the impact of LEPR genotype on gut microbiome composition in humans has not yet been studied. In this study, the association between LEPR single nucleotide polymorphism (rs1173100, rs1137101, and rs790419) and the gut microbiome composition in 65 non-obese Korean adults was investigated. Leptin, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels were also measured in all participants. Mean ± SD (standard deviation) of age, body mass index, and leptin hormone levels of participants was 35.2 ± 8.1 years, 21.4 ± 1.8 kg/m2, and 7989.1 ± 6687.4 pg/mL, respectively. Gut microbiome analysis was performed at the phylum level by 16S rRNA sequencing. Among the 11 phyla detected, only one showed significantly different relative abundances between LEPR genotypes. The relative abundance of Candidatus Saccharibacteria was higher in the G/A genotype group than in the G/G genotype group for the rs1137101 single nucleotide polymorphism (p=0.0322). Participant characteristics, including body mass index, leptin levels, and other lipid levels, were similar between the rs1137101 G/G and G/A genotypes. In addition, the relative abundances of Fusobacteria and Tenericutes showed significant positive relationship with plasma leptin concentrations (p=0.0036 and p=0.0000, respectively). In conclusion, LEPR genotype and gut microbiome may be associated even in normal-weight Korean adults. However, further studies with a greater number of obese adults are needed to confirm whether LEPR genotype is related to gut microbiome composition.

Nicotinic acid changes rumen fermentation and apparent nutrient digestibility by regulating rumen microbiota in Xiangzhong black cattle

  • Zhuqing Yang;Linbin Bao;Wanming Song;Xianghui Zhao;Huan Liang;Mingjin Yu;Mingren Qu
    • Animal Bioscience
    • /
    • 제37권2호
    • /
    • pp.240-252
    • /
    • 2024
  • Objective: The aim of this study was to investigate the impact of dietary nicotinic acid (NA) on apparent nutrient digestibility, rumen fermentation, and rumen microbiota in uncastrated Xiangzhong black cattle. Methods: Twenty-one uncastrated Xiangzhong black cattle (385.08±15.20 kg) aged 1.5 years were randomly assigned to the control group (CL, 0 mg/kg NA in concentrate diet), NA1 group (800 mg/kg NA in concentrate diet) and NA2 group (1,200 mg/kg NA in concentrate diet). All animals were fed a 60% concentrate diet and 40% dried rice straw for a 120-day feeding experiment. Results: Supplemental NA not only enhanced the apparent nutrient digestibility of acid detergent fiber (p<0.01), but also elevated the rumen acetate and total volatile fatty acid concentrations (p<0.05). 16S rRNA gene sequencing analysis of rumen microbiota revealed that dietary NA changed the diversity of rumen microbiota (p<0.05) and the abundance of bacterial taxa in the rumen. The relative abundances of eight Erysipelotrichales taxa, five Ruminococcaceae taxa, and five Sphaerochaetales taxa were decreased by dietary NA (p<0.05). However, the relative abundances of two taxa belonging to Roseburia faecis were increased by supplemental 800 mg/kg NA, and the abundances of seven Prevotella taxa, three Paraprevotellaceae taxa, three Bifidobacteriaceae taxa, and two operational taxonomic units annotated to Fibrobacter succinogenes were increased by 1,200 mg/kg NA in diets. Furthermore, the correlation analysis found significant correlations between the concentrations of volatile fatty acids in the rumen and the abundances of bacterial taxa, especially Prevotella. Conclusion: The results from this study suggest that dietary NA plays an important role in regulating apparent digestibility of acid detergent fiber, acetate, total volatile fatty acid concentrations, and the composition of rumen microbiota.

Potentiality of Beneficial Microbe Bacillus siamensis GP-P8 for the Suppression of Anthracnose Pathogens and Pepper Plant Growth Promotion

  • Ji Min Woo;Hyun Seung Kim;In Kyu Lee;Eun Jeong Byeon;Won Jun Chang;Youn Su Lee
    • The Plant Pathology Journal
    • /
    • 제40권4호
    • /
    • pp.346-357
    • /
    • 2024
  • This study was carried out to screen the antifungal activity against Colletotrichum acutatum, Colletotrichum dematium, and Colletotrichum coccodes. Bacterial isolate GP-P8 from pepper soil was found to be effective against the tested pathogens with an average inhibition rate of 70.7% in in vitro dual culture assays. 16S rRNA gene sequencing analysis result showed that the effective bacterial isolate as Bacillus siamensis. Biochemical characterization of GP-P8 was also performed. According to the results, protease and cellulose, siderophore production, phosphate solubilization, starch hydrolysis, and indole-3-acetic acid production were shown by the GP-P8. Using specific primers, genes involved in the production of antibiotics, such as iturin, fengycin, difficidin, bacilysin, bacillibactin, surfactin, macrolactin, and bacillaene were also detected in B. siamensis GP-P8. Identification and analysis of volatile organic compounds through solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) revealed that acetoin and 2,3-butanediol were produced by isolate GP-P8. In vivo tests showed that GP-P8 significantly reduced the anthracnose disease caused by C. acutatum, and enhanced the growth of pepper plant. Reverse transcription polymerase chain reaction analysis of pepper fruits revealed that GP-P8 treated pepper plants showed increased expression of immune genes such as CaPR1, CaPR4, CaNPR1, CaMAPK4, CaJA2, and CaERF53. These results strongly suggest that GP-P8 could be a promising biocontrol agent against pepper anthracnose disease and possibly a pepper plant growth-promoting agent.

Bacillus licheniformis GA9가 생산하는 키틴 분해효소의 정제 및 특성 (Purification and Characterization of a Chitinolytic Enzyme Produced by Bacillus licheniformis GA9)

  • 황동호;홍성욱;황형서;정건섭
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.470-478
    • /
    • 2016
  • 지렁이의 장내로부터 분리한 미생물 중에서 키틴 가수분해 활성이 우수한 미생물을 선발하였으며, 이를 동정하여 Bacillus licheniformis GA9으로 명명하였다. B. licheniformis GA9이 생산하는 키틴 분해효소의 정제는 배양상등액 40-60% 황산암모늄 침전, 음이온교환 크로마토그래피, 겔 크로마토그래피를 사용하여 정제하였다. 최종적으로 정제한 키틴 분해효소는 45.2배로 정제되었고 효소단백질 회수율은 20.0%를 나타내었다. 정제한 키틴 분해효소의 분자량은 약 52.1 kDa으로 나타났으며, N-terminal amino acid sequencing 분석결과, 아미노산 서열은 D-S-G-K-N-G-K-I-I-R-Y-Y-P-IR로 확인되었다. 키틴 분해효소의 최적반응 pH와 pH 안정성을 측정한 결과, pH 5.0에서 최대 활성을 나타내었으며 pH 5.0-6.0에서 안정성을 나타내었다. 키틴 분해효소의 최적반응 온도와 온도안정성의 경우, $40^{\circ}C$에서 최대 활성을 나타내었으며, $60^{\circ}C$까지 60%의 잔존 활성을 나타내었다. 정제한 키틴 분해효소는 10 mM $Co^{2+}$ 금속이온에 의해 효소활성이 증가하였으며, $Fe^{2+}$$Cu^{2+}$ 금속이온에 의해 효소활성이 감소하였으나, EDTA 첨가시 감소한 효소활성이 일부 회복되었다. 정제한 효소의 $K_m$$V_{max}$는 각각 4.02 mg/ml와 0.52 mg/min이었다. 또한 키틴 분해효소는 생명공학, 생물의약, 농업, 식품영양 등 다양한 산업분야에서 응용이 가능하다.

ACC Deaminase와 식물호르몬 생성 세균 처리에 의한 토마토 식물의 가뭄 조건에서의 생장 (Growth Promotion of Tomato Plant under Drought Conditions by Treatment of Rhizobacteria Producing ACC Deaminase and Phytohormones)

  • 서미소;송홍규
    • 미생물학회지
    • /
    • 제49권1호
    • /
    • pp.46-50
    • /
    • 2013
  • 일부 근권세균은 ACC deaminase를 생성하여 식물의 생장을 저해하고 노화를 촉진시키는 식물호르몬 에틸렌의 수준을 낮춤으로써 스트레스 조건 하의 식물의 생장을 지속시킨다. 본 연구에서는 모래사장에서 자라는 식물의 근권에서 ACC deaminase를 생성하는 세균 균주들을 분리하여 16S rDNA 염기서열 분석을 통해 Escherichia hermannii m-2, Enterobacter asburiaem-4, Pseudomonas thivervalensis BD2-26, and Pseudomonas brassicacearum subsp. neoaurantiaca BD3-35로 동정하였다. BD3-35 균주는 이들 중 가장 높은 ACC deaminase 활성, 20.26 ${\alpha}$-ketobutyrate ${\mu}M/mg$ protein/h을 나타내었다. 균주 BD3-35와 BD2-26는 식물호르몬 시토키닌, m-4는 옥신 IAA와 IBA, 그리고 균주 m-2는 ABA 생성능을 가졌다. 이 균주들은 모두 토마토종자 발아 시 유묘의 뿌리신장을 유의성 있게 촉진하였다. 또한 7일간 자란 토마토 식물에 처리하고 가뭄 스트레스 하에서 7일간 재배하였을 때 비접종 대조군에 비해 균주 BD3-35, m-2와 m-4는 토마토 뿌리의 길이를 각각 14, 15와 35% 증가시켰으며, m-2, BD2-26와 BD3-35는 토마토 식물의 건조중량을 각각 22, 33과 68% 증가시켰다. 따라서 이 균주들은 가뭄 스트레스 하의식물을 위한 미생물 비료로 사용될 수 있는 가능성을 보였다.

Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis

  • Zhang, Yunhua;Zhang, Zhengyou;Dai, Li;Liu, Ying;Cheng, Maoji;Chen, Lijuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.63-70
    • /
    • 2018
  • Objective: The aim of the study was to isolate gossypol-degrading bacteria and to assess its potential for gossypol degradation. Methods: Rumen liquid was collected from fistulated cows grazing the experimental pasture. Approximately 1 mL of the rumen liquid was spread onto basal medium plates containing 2 g/L gossypol as the only source of carbon and was then cultured at $39^{\circ}C$ to isolate gossypol-degrading bacteria. The isolated colonies were cultured for 6 h and then their size and shape observed by microscope and scanning electron microscope. The 16S rRNA gene of isolated colonies was sequenced and aligned using National Center for Biotechnology Information-Basic Local Alignment Search Tool. The various fermentation conditions, initial pH, incubation temperature, inoculum level and fermentationperiod were analyzed in cottonseed meal (CSM). The crude protein (CP), total gossypol (TG), and free gossypol (FG) were determined in CSM after fermentation with isolated strain at $39^{\circ}C$ for 72 h. Results: Screening results showed that a single bacterial isolate, named Rumen Bacillus Subtilis (RBS), could use gossypol as a carbon source. The bacterium was identified by 16S rDNA sequencing as being 98% homologous to the sequence of Bacillus subtilis strain GH38. The optimum fermentation conditions were found to be 72 h, $39^{\circ}C$, pH 6.5, moisture 50%, inoculum level $10^7cell/g$. In the optimum fermentation conditions, the FG and TG content in fermented CSM decreased 78.86% and 49% relative to the control. The content of CP and the essential amino acids of the fermented CSM increased respectively, compared with the control. Conclusion: The isolation of a gossypol-degrading bacterium from the cow rumen is of great importance for gossypol biodegradation and may be a valuable potential source for gossypol-degradation of CSM.