• 제목/요약/키워드: 13X zeolite sorbent

검색결과 2건 처리시간 0.016초

Optimization of Ni2+ adsorption on 13X zeolite using box-behnken design

  • Jafari, Shoeib;Bandarchian, Farideh
    • Advances in environmental research
    • /
    • 제6권3호
    • /
    • pp.217-227
    • /
    • 2017
  • In this study, the elimination of $Ni^{2+}$ using 13X sorbent due to an electrostatic interaction was reported. The significant factors including pH, time and 13X sorbent amount were investigated using Box-Behnken design (BBD). In the optimum experimental conditions, the linear rang and limit of detection of the proposed method were 0.1-20 and $0.102mg\;L^{-1}$, respectively. The precision as RSD% was 1.3% for concentration of $2mg\;L^{-1}$. Concerning the excellent recoveries in a short time with highly efficient sample clean-up and removal, this method may be a very powerful and innovative future sample removal technique. To the best of our knowledge, this is the first report on using BBD for optimizing the parameters affected the removal of $Ni^{2+}$ by 13X zeolite sorbent.

Screening of Spray-Dried K2CO3-Based Solid Sorbents using Various Support Materials for CO2 Capture

  • Eom, Tae Hyoung;Lee, Joong Beom;Baek, Jeom In;Ryub, Chong Kul;Rhee, Young Woo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.115-120
    • /
    • 2015
  • $K_2CO_3$-based dry regenerable sorbents were prepared by spray-drying techniques to improve mass produced $K_2CO_3-Al_2O_3$ sorbents (KEP-CO2P, hereafter), and then tested for their $CO_2$ sorption capacity by a $2,000Nm^3/h$ (0.5 MWe) $CO_2$ capture pilot plant built for Unit 3 of the Hadong thermal power station in 2010. Each of the sample sorbents contained 35 wt.% $K_2CO_3$ as the active materials with various support materials such as $TiO_2$, MgO, Zeolite 13X, $Al_2O_3$, $SiO_2$ and hydrotalcite (HTC). Their physical properties and reactivity were tested to evaluate their applicability to a fluidized-bed or fast transport-bed $CO_2$ capture process. The $CO_2$ sorption capacity and percentage utilization of $K_2CO_3$-MgO based sorbent, Sorb-KM2, was $8.6g-CO_2/100g$-sorbents and 90%, respectively, along with good mechanical strength for fluidized-bed application. Sorbs-KM2 and KT were almost completely regenerated at $140^{\circ}C$. No degradation of Sorb-KM by $SO_2$ added as a pollutant in flue gas was observed during a cycle test.