• Title/Summary/Keyword: 13-HODE

Search Result 3, Processing Time 0.021 seconds

Biological Significance of Essential Fatty Acids/Prostanoids/Lipoxygenase-Derived Monohydroxy Fatty Acids in the Skin

  • Ziboh, Vincent-A.;Cho, Yunhi;Mani, Indu;Xi, Side
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.747-758
    • /
    • 2002
  • The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin $E_2(PGE_2)$ and $PGF_{2{\alpha}}$, the metabolism of AA via the 15-lipoxygenase (15-LOX) pathway, which is very active in skin epidermis and catalyzes the transformation of M into predominantly 15S-hydroxyeicosatetraenoic acid (15S-HETE). Additionally, the 15-LOX also metabolizes the 18-carbon LA into 13S-hydroxyoctadecadienoic acid (13S-HODE), respectively. Interestingly, 15-LOX catalyzes the transformation of $dihomo-{\gamma}-linolenic$ acid (DGLA), derived from dietary gamma-linolenic acid, to 15S-hydroxyeicosatrienoic acid (15S-HETrE). These monohydroxy fatty acids are incorporated into the membrane inositol phospholipids which undergo hydrolytic cleavage to yield substituted-diacylglycerols such as 13S-HODE-DAG from 13S-HODE and 15S-HETrE-DAG from 15S-HETrE. These substituted-monohydroxy fatty acids seemingly exert anti-inflammatory/antiproliferative effects via the modulation of selective protein kinase C as well as on the upstream/down-stream nuclear MAP-kinase/AP-1/apoptotic signaling events.

Arctii Fructus is a Prominent Dietary Source of Linoleic Acid for Reversing Epidermal Hyperproliferation of Guinea Pigs (기니피그 동물 모델에서 우방자와 홍화유의 표피 과증식 억제 효과 비교)

  • 성경화;김주영;이주희;박성규;조윤희
    • Journal of Nutrition and Health
    • /
    • v.36 no.8
    • /
    • pp.819-827
    • /
    • 2003
  • Linoleic acid [LA; 18: 2 (n-6)] is the most abundant polyunsaturated fatty acid in human skin. The exclusion of LA from diet induces epidermal hyperproliferation, which is reversible by the inclusion of LA in diet, and hence, LA is heralded as an essential fatty acid (EFA). Since safflower oil (SO) has been widely recognized as the major dietary source of LA and Arctii Fructus (Arctium lappa L.) is recently reported to contain high level of LA, we compared the antiproliferative effects of SO and Arctii Fructus in this study. Epidermal hyperproliferation was induced in guinea pigs by hydrogenated coconut oil (HCO) diet for 8 wk. During following 2 wk, EFA deficient guinea pigs were fed diets of safflower oil (group HS), water extract of Arctii Fructus (group AW) or organic extract of Arctii Fructus (group AO). Normal control group was fed SO containing diet (group SO) and EFA deficient group was fed HCO containing diet (group HCO) for 10 wk. Epidermal hyperproliferation was reversed in groups AO (55.9% of group HCO) and HS(74.1% of group HCO). However, the thymidine incorporation into epidermal DNA of group HS was greater than of normal control group SO. Epidermal hyperproliferation was not reversed in group AW. The accumulations of LA into phospholipids and ceramides, and of 13-hydroxyoctadecadienoic acid (13-HODE), the potent antiproliferative metabolite of LA in the epidermis of group AO were greater than of group HS. In contrast, the de novo synthesis of ceramides, the major lipids maintaining epidermal barrier, did not differ between all of groups. Together, our data demonstrate that organic extract of Arctii Fructus is more prominent than safflower oil in reversing epidermal hyperproliferation by inducing the higher accumulations of LA and 13-HODE in the epidermis of guinea pigs.