• Title/Summary/Keyword: 12Cr steel

검색결과 175건 처리시간 0.028초

Evaluation of Residual Stresses in 12%-Cr Steel Friction Stir Welds by the Eigenstrain Reconstruction Method

  • Jun, Tea-Sung;Korsunsky, Alexander M.
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.15-22
    • /
    • 2015
  • In the present paper we report the results of a study into Friction Stir Welds (FSWs) made in 13 mm-thick 12%-Cr steel plates. Based on residual strains obtained by diffraction techniques, eigenstrain analysis was performed using the Eigenstrain Reconstruction Method (ERM), which is a novel methodology for the reconstruction of full-field residual strain and stress distributions within engineering components. Significant eigenstrain distributions were found at around Thermo-Mechanically Affected Zone (TMAZ) where the most severe plastic deformation was occurred. Microstructure analysis was used to elucidate this phenomenon showing that the grain structure in TMAZ was bent and not successfully recrystallised, resulting in severe deformation behaviour. The reconstructed residual strain distributions by the ERM agree well with the experimental results. It was found that the approach based on theory of eigenstrain is a powerful basis for reconstructing the full-field residual strain/stress distributions in engineering components and structures.

9-12% Cr강의 용접부에 미치는 δ-ferrite의 영향 (The Effects of δ-ferrite on Weldment of 9-12% Cr Steels)

  • 안성용;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.8-16
    • /
    • 2013
  • As the energy consumption increases rapidly, power generation needs the high energy efficiency continuously. To achieve the high efficiency of power generation, the materials used have to endure the higher temperature and pressure. The 9-12%Cr steels possess good mechanical properties, corrosion resistance, and creep strength in high temperature due to high Cr contents. Therefore, the 9-12%Cr steels are widely used for the high-temperature components in power plants. Even though the steels usually have a fully martensitic microstructure, they are susceptible to the formation of ${\delta}$-ferrite specifically during the welding process. The formation of ${\delta}$-ferrite has several detrimental effects on creep, ductility and toughness. Therefore, it is necessary to avoid its formation. As the volume fraction of ${\delta}$-ferrite is less than 2% in microstructure, it has the isolated island morphology and causes no significant degradation on mechanical properties. For ${\delta}$-ferrite above 2%, it has a polygonal shape affecting the detrimental influence on the mechanical properties. The formation of ${\delta}$-ferrite is affected by two factors: a chemical composition and a welding heat input. The most effective ways to get a fully martensite microstructure are to reduce the chromium equivalent less than 13.5, to keep the difference between the chromium and nickel equivalent less than 8, and to reduce the welding heat input.

마르텐사이트계 스테인레스강의 기계적 성질에 미치는 침탄처리의 영향 (Influence of Carburizing on the Mechanical Properties of Martensitic Stainless Steel)

  • 김인배;박세윤;이창호
    • 한국표면공학회지
    • /
    • 제17권1호
    • /
    • pp.7-13
    • /
    • 1984
  • Carburizing of a 12%Cr steel containing 0.6%Si was performed at 950$^{\circ}C$ for various times, and the microstructure, hardness and the water characteristics of the carburized chromium steel were examined. The results obtained in this study are as follows: 1. Carbide-dispersed layer (CD layer) with fine dispersion of $Cr_7C_3$ in martensite matrix was formed by carburizing. The radius and amount of the carbides in the surface region of CD layer were about 0.3${\mu}m$ and 35% by volume, respectively. 2. Chromium steel carburized and quench-tempered showed better wear resistance and hardness than ordinary high chromium tool steel. It is concluded from these results that fine dispered carbides are very effective in improving wear resistance and hardness.

  • PDF

SUS 300계 스테인리스강의 표면특성에 관한 연구 (A Study on Surface Properties in SUS 300 base Stainless Steel)

  • 이경구;윤동주;기회봉;최답천;이도재
    • 열처리공학회지
    • /
    • 제12권1호
    • /
    • pp.31-39
    • /
    • 1999
  • In the present study, oxidation behavior of 304 and 316 stainless steels was investigated. After solution treatment, specimens were polished up to $1{\mu}m$ $Al_2O_3$ grade and then subjected to oxidation treatment in dry air. The range of temperature was used for oxidation treatment at $300^{\circ}C{\sim}500^{\circ}C$ and TEM was used for analyzing the components and structure of oxide film. Also, these results were compared with the results of ESCA and TG. According to the results of TEM analysis, it was found that Cr oxide film was formed on top of the surface after room temperature oxidation but amorphous Fe oxide was formed on top of the surface and polycrystalline $(Cr,Fe)_2O_3$ was formed below the amorphous Fe oxide layer after $500^{\circ}C$ oxidation treatment. The oxidized specimens at $500^{\circ}C$ showed that 316 stainless steel resists more strongly to grain and grain boundary oxidation than 304 stainless steel. These results suggested that Mo component resolved in 316 stainless steel matrix suppressed the formation of Cr carbide which may results in local Cr deplete area.

  • PDF

Nb이 첨가된 STS 444 페라이트계 스테인리스강의 고온질화 열처리시 조직변화 (Phase Changes during High Temperature Gas Nitriding of Nb Alloyed STS 444 Ferritic Stainless steel)

  • 공정현;유대경;이해우;김영희;성장현
    • 열처리공학회지
    • /
    • 제20권6호
    • /
    • pp.323-328
    • /
    • 2007
  • This study has been investigated the effect of high temperature gas nitriding (HTGN) heat treatment of STS 444 (18Cr-0.01Ni-0.01C-0.2Nb) ferritic stainless steel in an atmosphere of nitrogen gas at the temperature range between $1050^{\circ}C\;and\;1150^{\circ}C$. The surface layer was changed into martensite and austenite with the nitrides of NbCrN by HTGN treatment. Due to the precipitation of nitrides and matrensite formation, the hardness of the surface layer showed $400Hv{\sim}530Hv$. The nitrogen concentration of the surface layer appeared as 0.05%, 0.12% and 0.92%, respectively, at $1050^{\circ}C,\;1100^{\circ}C\;and\;1150^{\circ}C$. When the nitrogen is permeated from surface to interior, Nb and Cr, which have strong affinities with nitrogen, also move from interior to surface. Therefore it is considered that this counter-current of atoms promotes the formation of NbCrN at the surface layer.

화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구 (A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition)

  • 오세규;정순억
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.207-207
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson,s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구 (A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition)

  • 오세규;정순억
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.67-75
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson, s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

  • PDF

304 및 316L 스테인레스강 미립 분말의 소결 특성 (Sintering Characteristics of 304 and 316L Stainless Steel Fine Powder)

  • 임태환
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1555-1559
    • /
    • 2008
  • $5{\sim}150{\mu}m$의 오스테나이트계 304(Fe-18%Cr-12%Ni) 및 316L(Fe-18%Cr-13%Ni-2.4%Mo)미립 분말을 사용하여 소결 특성을 평가한 결과, 다음과 같은 결론을 얻었다 (1) 3.6ks의 소결 시간으로는 어느 경우에 있어서나 소결조건에 관계없이 소결체의 상대밀도는 $95{\sim}98%$에서 포화하여 완전 치밀화된 소결체를 얻을 수 없었다. (2) $5{\mu}m$분말을 진공소결 하였을 경우, ts=57.6ks에서 거의 완전 치밀화된 소결체가 얻어졌다. (3) 소결 분위기에 상관없이 304 및 316L소결체에는 $0.5{\sim}0.6%$정도의 산소가 잔류하였다. (4) 진공 소결의 경우, 탄소분 첨가에 의해 소결체의 잔류 산소량은 무첨가 소결체에 비하여 0.375이상 감소하였고, 조직적으로도 산화물은 거의 관찰되지 않았다. 또한 탄소 첨가는 소결체의 밀도 향상 효과로 작용하여 목적하는 완전 치밀화된 고성능 소결체를 제조하는 것이 가능하게 되었다.

주조용 이상스테인리스강에서 응고속도 및 질소고용도에 따른 오스테나이트 석출 거동 (Austenite Precipitation Behaviors with Solidification Rate and N Solubility in Cast Duplex Stainless Alloys)

  • 이종엽;이재현;김상식;최병학;김성준;손희영
    • 한국재료학회지
    • /
    • 제17권12호
    • /
    • pp.654-659
    • /
    • 2007
  • Austenite precipitation behavior was studied with solidification rates and alloying contents, N and Cr, in duplex stainless steels by directional solidification. Directional solidification experiments were carried out with solidification rates, $1{\sim}100mm/s$, and N and Cr contents, $0{\sim}0.27wt.%,\;25{\sim}28wt.%$ respectively, in a duplex stainless steel, CD4MCU. As the solidification rate increases, the dendrite spacing reduced and the austenite phase in the ferrite matrix became finer. The volume fraction of austenite phase increased and its shape went to be round with increasing nitrogen contents in duplex stainless alloys. The Cr alloying element, even though it is a ferrite former, showed to enhance the nitrogen solubility in the alloy and caused the austenite round and finer. Also, Cr was supposed to decrease the austenite volume fraction, but it increased the austenite slightly due to increasing nitrogen solubility during solidification.

Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조 (Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal)

  • 정창주;장복기;문종하;강경인
    • 한국세라믹학회지
    • /
    • 제33권12호
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF