• 제목/요약/키워드: 12-Oleanene-3-$\beta$

검색결과 4건 처리시간 0.026초

Antishigellosis and Cytotoxic Potency of Crude Extracts and Isolated Constituents from Duranta repens

  • Nikkon, Farjana;Habib, M. Rowshanul;Karim, M. Rezaul;Hossain, M. Shamim;Mosaddik, M. Ashik;Haque, M. Ekramul
    • Mycobiology
    • /
    • 제36권3호
    • /
    • pp.173-177
    • /
    • 2008
  • The crude ethanol extracts (stem and fruits), their fractions and two triterpenes, $\beta$-Amyrin and 12-Oleanene 3$\beta$, 21$\beta$-diol, isolated as a mixture from the chloroform soluble fraction of an ethanolic extract of Duranta repens stem, were evaluated for antibacterial, antifungal activities by the disc diffusion method and cytotoxicity by brine shrimp lethality bioassay. The structures of the two compounds were confirmed by IR, $^1H$-NMR, $^{13}C$-NMR and LC-MS spectral data. The chloroform soluble fraction of stem and ethanol extract of fruits possess potent antishigellosis activity and also exhibited moderate activity against some pathogenic bacteria and fungi but the isolated compound 1 (mixture of $\beta$-Amyrin and 12-Oleanene 3$\beta$, 21$\beta$-diol) showed mild to moderate inhibitory activity to microbial growth. The minimum inhibitory concentrations (MICs) of the extracts (stem and fruits), their fractions and compound 1 were found to be in the range of 32$\sim$128 ${\mu}g/ml$. The chloroform soluble fractions of stem and ethanol extract of fruit showed significant cytotoxicity with $LC_{50}$ value of 0.94 ${\mu}g/ml$ and 0.49 ${\mu}g/ml$, respectively against brine shrimp larvae.

Tectona grandis Callus Produces Antibacterial Triterpene Acids Not Detected in the Intact Plant

  • Marwani, Erly;Kobayashi, Akio;Kajiyama, Shin-ichiro;Fukusaki, Eiichiro;Nitoda, Teruhiko;Kanzaki, Hiroshi;Kawazu, Kazuyoshi
    • Natural Product Sciences
    • /
    • 제3권1호
    • /
    • pp.75-80
    • /
    • 1997
  • Preliminary antibacterial assay data that the Tectona grandis callus extract showed more antibacterial activity against E. coli and B. subtilis than the leaf extract led the authors to isolate the following antibacterial compounds from the callus. A mixture (3) of $2{\alpha},3{\beta}-dihydroxy-olean-12-en-28-oic$ acid (3a) and $2{\alpha},3{\beta}-dihydroxy-urs-12-en-28-oic$ acid (3b) exhibited the most potent antibacterial activity against both bacteria. The other 3 compounds, in the decreasing order of the activity, were identified as $2{\alpha},3{\beta}-dihydroxy-urs-12-en-28-oic$ acid (2), betulinic acid (1), and $2{\alpha},3{\alpha}$,23-trihydroxy-urs-12-en-28-oic acid (4). The antibacterial compounds (2, 3a, 3b and 4) were not detected or occurring in small quantities in the intact tissue, while they were observed in the callus. Only the less active compound 1 was present more abundantly in intact tissues than the callus.

  • PDF

Identification of Dammarane-type Triterpenoid Saponins from the Root of Panax ginseng

  • Lee, Dong Gu;Lee, Jaemin;Yang, Sanghoon;Kim, Kyung-Tack;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • 제21권2호
    • /
    • pp.111-121
    • /
    • 2015
  • The root of Panax ginseng, is a Korea traditional medicine, which is used in both raw and processed forms due to their different pharmacological activities. As part of a continued chemical investigation of ginseng, the focus of this research is on the isolation and identification of compounds from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, semi-preparative-high performance liquid chromatography, Fast atom bombardment mass spectrometric, and nuclear magnetic resonance. Dammarane-type triterpenoid saponins were isolated from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, and semi-preparative-high performance liquid chromatography. Their structures were identified as protopanaxadiol ginsenosides [gypenoside-V (1), ginsenosides-Rb1 (2), -Rb2 (3), -Rb3 (4), -Rc (5), and -Rd (6)], protopanaxatriol ginsenosides [20(S)-notoginsenoside-R2 (7), notoginsenoside-Rt (8), 20(S)-O-glucoginsenoside-Rf (9), 6-O-[$\alpha$-L-rhamnopyranosyl(1$\rightarrow$2-$\beta$-D-glucopyranosyl]-20-O-$\beta$-D-glucopyranosyl-$3\beta$,$12\beta$, 20(S)-dihydroxy-dammar-25-en-24-one (10), majoroside-F6 (11), pseudoginsenoside-Rt3 (12), ginsenosides-Re (13), -Re5 (14), -Rf (15), -Rg1 (16), -Rg2 (17), and -Rh1 (18), and vinaginsenoside-R15 (19)], and oleanene ginsenosides [calenduloside-B (20) and ginsenoside-Ro (21)] through the interpretation of spectroscopic analysis. The configuration of the sugar linkages in each saponin was established on the basic of chemical and spectroscopic data. Among them, compounds 1, 8, 10, 11, 12, 19, and 20 were isolated for the first time from P. ginseng root.

Studies on Triterpenoid Corticomimetics

  • Han, Byung-Hoon;Han, Yong-Nam;Kim, Tae-Hee
    • 생약학회지
    • /
    • 제17권2호
    • /
    • pp.178-183
    • /
    • 1986
  • It was our working hypothesis that introduction of 11-keto groups to 12-oleanene/ursene series of triterpenoids should endow them with corticoid-like activities, since pharmacological actions of glycyrrhetinic acid (GA) are known to be caused by inhibition on $corticoid-{\delta}^4-reductase$. 11-Keto-triterpenoids derived artificially in these studies, such as 11, 19-diketo-18, 19-secoursolic acid methyl ester(I), $11-keto-{\beta}-boswellic$ acid derivatives (IIa-IIc), 11-Keto-presenegenin dimethyl ester (III), II-keto-oleanolic acid derivatives (IVa-IVd) and 11-keto-hederagenin (V) possess the fundamental functions of ${\alpha},\;{\beta}-unsaturated$ ketone on C-11 and hydroxyl group on C-3, as like GA (VI). Additionally, they involve the carboxyl groups on rings A (II, III), D (I, III, IV, V) and E (VI), and the hydroxyl groups on rings A (III, V) and C (III). All the compounds competitively inhibited $corticoid-5{\beta}-reductase$, and the highest inhibitory potency appeared in I. All of them except $3,\;11-diketo-{\beta}-boswellic$ acid methyl ester (IIc) were more effective about five times to twice than GA. On carrageenin-induced edema test, compounds I and IVa-IVd showed anti-inflammatory activities, but III enhanced rather edema. Structure-activity relations were found in the aspects of hydrophilicity of ring A and hydrophobicity of rings C/D. The more they were hydrophilic in ring A and hydrophobic in rings C/D, the more they inhibited the enzyme. And the more they were hydrophobic in rings C/D, the more they exhibited antiiflammatory activities. However, the increased hydrophilicity in ring A resulted in increasing edema, probably due to a nonspecific inhibition on $aldosterone-5{\beta}-reductase$.

  • PDF