• Title/Summary/Keyword: 11 $\alpha$-Hydroxylation

Search Result 15, Processing Time 0.022 seconds

Effects of Several Inhibitors of Human Liver Microsomal Cytochrome P450 3A4 on Catalytic Activities of the Enzyme (인체 간 조직의 cytochrome P450 3A4의 활성에 대한 몇가지 억제제의 영향)

  • 오현숙;이갑상;김복량
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 1995
  • Microsomes from human liver sample HL 110 oxidized aflatoxin $B_1$ $(AFB_1)$ to $AFB_1$ exo-8, 9-epoxide which was detected as a glutathione (GSH) conjugate with excess GSH S-transferase and to aflatoxin $Q_1$ ($AFB_1$; 3$\alpha$-hydroxyafiatoxin $B_1$), and testosterone to 6$\beta$-hydroxytestosterone. Anti-P450 3A4 nearly completely inhibited all of the reactions. Some fiavonoids inhibited all of the reactions. While other fiayonolds stimulated 8, 9-epoxidation and inhibited 3$\alpha$-hydroxylation. Gestodene inhibited all of the reactions when gestodene was metabolized by human liver microsomal P450 3A4 prior to adding substrate. But, ges-todene was added in the enzyme mixtures in the presence of $AFB_1$, it could not inhibit 8, 9-epoxidation of $AFB_1$. Nifedipine and troleandomycin inhibited both of the reactions of $AFB_1$ but only 3$\alpha$-hydroxylation was inhibited by the oxidation product of nifedipine. Although, troleandomycin was known as a mechanism-based inhibitor, the chemical did not show any detectable inhibitory effect on 6$\beta$-hydroxylation of testosterone. The results suggest that there are several different substrate-binding sites on P450 3A4.

  • PDF

Effects of Impeller Geometry on the 11α-Hydroxylation of Canrenone in Rushton Turbine-Stirred Tanks

  • Rong, Shaofeng;Tang, Xiaoqing;Guan, Shimin;Zhang, Botao;Li, Qianqian;Cai, Baoguo;Huang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.890-901
    • /
    • 2021
  • The 11α-hydroxylation of canrenone can be catalyzed by Aspergillus ochraceus in bioreactors, where the geometry of the impeller greatly influences the biotransformation. In this study, the effects of the blade number and impeller diameter of a Rushton turbine on the 11α-hydroxylation of canrenone were considered. The results of fermentation experiments using a 50 mm four-blade impeller showed that 3.40% and 11.43% increases in the conversion ratio were achieved by increasing the blade number and impeller diameter, respectively. However, with an impeller diameter of 60 mm, the conversion ratio with a six-blade impeller was 14.42% lower than that with a four-blade impeller. Data from cold model experiments with a large-diameter six-blade impeller indicated that the serious leakage of inclusions and a 22.08% enzyme activity retention led to a low conversion ratio. Numerical simulations suggested that there was good gas distribution and high fluid flow velocity when the fluid was stirred by large-diameter impellers, resulting in a high dissolved oxygen content and good bulk circulation, which positively affected hyphal growth and metabolism. However, a large-diameter six-blade impeller created overly high shear compared to a large-diameter four-blade impeller, thereby decreasing the conversion ratio. The average shear rates of the former and latter cases were 43.25 s-1 and 35.31 s-1, respectively. We therefore concluded that appropriate shear should be applied in the 11α-hydroxylation of canrenone. Overall, this study provides basic data for the scaled-up production of 11α-hydroxycanrenone.

Biotransformation of Progesterone to 11 $\alpha$-Hydroxyprogesterone by using Rhizopus nigricans at Elevated Concentration of the Substrate (Rhizopus nigricans를 이용한 고농도의 Progesterone으로부터 11$\alpha$-hydroxyprogesterone의 생산)

  • 최용복;최상기;박영훈
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.66-70
    • /
    • 1990
  • A study on 11 $\alpha$-hydroxylation of progesterone by using Rhizopus nigricans was carried out to produce efficiently 11 $\alpha$-hydroxyprogesterone which is an essential intermediate of corticosteroids synthesis. Firstly, medium was optimized in view of bioconversion yield and cell growth. Glucose and casamino acid were selected as carbon and nitrogen source and the ratio of carbon to nitrogen which maximize bioconversion yield was determined to be 2:1. Secondly, the addition time of progesterone and dispersion method were studied. When progesterone dispersed with 0.01% (v/v) Tween 80 was added at 12-14 hr of cultivation, higher bioconversion yield was obtained. When 20g/$\ell$ of progesterone was added, the yield reached 70% under optimized conditions.

  • PDF

Metabolic Activation of Marijuana Constituents, Cannabinoids, in Relation to Their Toxicity for Human and Its Oxidation Mechanism

  • Ikuo, Yamamoto
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.194-199
    • /
    • 2002
  • Many oxidative metabolites of tetrahydrocannabinols (THCs), active components of marijuana, were pharmacologically active, and 11-hydroxy-THCs, 11-oxo-${\Delta}^8$-THC, 7-oxo-${\Delta}^8$-THC, 8$\beta$, 9$\beta$-epoxyhexahydrocannabinol (EHHC), 9$\alpha$, l0$\alpha$-EHHC and 3'-hydroxy-${\Delta}^9$-THC were more active than THC in pharmacological effects such as catalepsy, hypothermia and barbiturate synergism in mice. Cannabidiol (CBD), another major component, was biotransfomred to two novel metabolites, 6-hydroxymethyl-${\Delta}^9$-THC and 3-pentyl-6, 7, 7a, 8, 9, lla-hexahydro-I, 7-dihydroxy-7, 1O-dimethyldibenzo[b, d]oxepin (PHDO) through 8R, 9-epoxy-CBD and 85, 9-epoxy-CBD, respectively. Both metabolites exhibited some pharmacological effects comparable to d9 - THe. Cannabinol (CBN), the other major component, was mainly metabolized to ll-hydroxy-CBN by hepatic microsomes of animals including humans. The pharmacological effects of the metabolite were higher than those of CBN demonstrating that II-hydroxylation of CBN is metabolic activation pathway of the cannabinoid as is the case in THCs. Tolerance and reciprocal cross-tolerance developed to pharmacological effects d8 - THC and ll-hydroxy-d8-THC , and the magnitude of tolerance development produced by the metabolite was significantly higher than that by d8-THC. The results indicate that ll-hydroxy-d8-THC has an important role not only in the pharmacological effects but also its tolerance development of d8 - THe. THCs and their metabolites competed to the specific binding of CP-55, 940, an agonist of cannabinoid receptor, to synaptic membrane from bovine cerebral cortex. The Ki value of THCs and their metabolites were closely paralleled to their pharmacological effects in mice. A novel cytochrome P450 (cyp2c29) was purified and identified as a major enzyme responsible for the metabolic activation of d8-THC at the II-position in the mouse liver. cDNA of CYP2C29 was cloned from a mouse cDNA library and its sequence was determined. The oxidation mechanism of THC by cyp2c29 was proposed.

  • PDF

Cloning and Expression Analysis of the ${\alpha}$-Subunit of Porcine Prolyl 4-hydroxylase

  • Cho, Eun Seok;Jung, Won Youg;Kwon, Eun Jung;Park, Da Hye;Chung, Ki Hwa;Cho, Kwang Keun;Kim, Chul Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1655-1661
    • /
    • 2007
  • Prolyl 4-hydroxylase (P4H) plays a central role in collagen synthesis by catalyzing the hydroxylation of the proline residue in the X-Pro-Gly amino acid sequence, and controls the biosynthesis of collagen that influences overall meat quality. In order to verify expression level of the catalytic ${\alpha}$ subunit of P4H, a 2.7 kb clone of the ${\alpha}$ subunit gene for P4H was selected from a cDNA library prepared from the muscular tissue of Sancheong berkshire pigs, and the whole gene sequence was determined. As expression level of the ${\alpha}$ subunit of P4H differed between tissues of pigs, we intended to assess more precisely the level of ${\alpha}$-subunit expression between tissues of Sancheong Berkshire pigs by using RT-PCR. Muscular and adipose tissues were taken from each pig grouped by growth stage (weighing 60, 80, and 110 kg) of Yorkshire and Sancheong Berkshire pigs, and the expression levels of the ${\alpha}$-subunit of P4H were examined. Since there were significant differences in the expression level with respect to variation in growth stage (p<0.01), an attempt was made to identify any influences of pig species and tissue variation. The muscular and adipose tissues of pigs weighing 110 kg showed higher expression levels than pigs weighing 60 kg and 80 kg. In general, significantly higher expression levels were found in muscular than in adipose tissue. The expression levels in Sancheong Berkshire were significantly higher than in Yorkshire pigs (p<0.01 or p<0.05). Since expression level of the ${\alpha}$-subunit of P4H affects the activity of P4H and is connected to the biosynthesis of collagen and increased collagen can improve meat texture, this finding may explain why meat quality of the Sancheong Berkshire pig is acclaimed in Korea. Given the higher expression levels of the ${\alpha}$-subunit gene in adipose than in muscular tissue, and also in the heavier pigs, more intensive studies are required to assess the correlation between expression level of the ${\alpha}$ subunit gene and overall meat quality.