• Title/Summary/Keyword: 10GHz

Search Result 3,815, Processing Time 0.027 seconds

Design of Strip Line Fed Slot Antenna for 5GHz(WLAN, ISM Band) Application (스트립라인 급전을 이용한 5GHz(WLAN, ISM Band)대역용 슬롯 안테나 설계)

  • 전찬익;이범선
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.100-103
    • /
    • 2002
  • 본 논문에서는 무선 인터넷 사업 및 초고속 정보통신 인프라 구축과 관련하여 WRC-2003에서 새롭게 분배하기로 결정된 5GHz대역(5.135~5.35GHz, 5.47~5.725GHz)과 기존의 ISM 대역(5.75~5.85GHz)에 동시에 사용할 수 있는 스트립 라인 급전을 이용한 슬롯 안테나를 설계하였다. 무선통신 시스템의 박형화를 위하여 평면 내장형으로 설계하였으며 안테나의 크기는 5.04$\times$12.55$\times$2.0[mm]이며 FR-4($\varepsilon$$_{r}$=4.6)를 substrate로 사용하였다. 중심주파수 5.749GHz를 중심으로 10㏈ 기준대역폭 28.54%(4.929~6.561GHz)fmf 갖는다. 안테나의 이들은 약 4.2㏈i이다.

  • PDF

Design of Triple-Band Planar Monopole Antenna Having a Parasitic Element with Low SAR Using a Reflector (기생 소자를 이용한 3중 대역 모노폴 안테나 SAR 저감 설계)

  • Bong, HanUl;Hussain, Niamat;Jeong, MinJoo;Lee, SeungYup;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.181-189
    • /
    • 2019
  • In this study, a triple-band antenna that can be used in WLAN(Wireless Local Area Network) at 2.4 GHz, 5.8 GHz, and 5G at 3.5 GHz is fabricated. The proposed antenna uses a parasitic element to show the triple band, and the reflector is used at a distance of ${\lambda}/4$ from the antenna to reduce the Specific Absorption Rate(SAR). Its dimensions are $100{\times}75{\times}1.6mm^3$ and each parameter value is optimized for better performance and a lower SAR value. As a result, we obtained a bandwidth of 540 MHz(2.02~2.56 GHz), 390 MHz(3.39~3.78 GHz), and 1,210 MHz(5.56~6.77 GHz) based on the reflection loss factor of -10 dB. In addition, the SAR values of the antenna with reflector are observed to reduce below the SAR value of international standard.

A 24 GHz I/Q LO Generator for Heartbeat Measurement Radar System (심장박동 측정 레이더를 위한 24GHz I/Q LO 발생기)

  • Yang, Hee-Sung;Lee, Ockgoo;Nam, Ilku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.66-70
    • /
    • 2016
  • This paper presents an 24 GHz I/Q LO generator for a heartbeat measurement radar system. In order to improve the mismatch performance between I and Q LO signals against process variation, a 24 GHz I/Q LO generator employing a low-pass phase shifter and a high-pass phase shifter composed of inductors and capacitors is proposed. The proposed 24 GHz I/Q LO generator consists of an LO buffer, a low-pass phase shifter and a high-pass phase shifter. It was designed using a 65 nm CMOS technology and draws 8 mA from a 1 V supply voltage. The proposed 24 GHz I/Q LO generator shows a gain of 7.5 dB, a noise figure of 2.3 dB, 0.1 dB gain mismatch and $4.3^{\circ}$ phase mismatch between I and Q-path against process and temperature variations for the operating frequencies from 24.05 GHz to 24.25 GHz.

Requirements for 6 GHz Unlicensed Bands (6 GHz 비면허 대역 이용을 위한 기술기준)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.415-422
    • /
    • 2020
  • Federal Communications Commissions (FCC) has adopted a new rule that can provide a 1,200 MHz unlicensed spectrum to maximize the public benefits in the 5.925 ~ 7.125 GHz(6 GHz) band by expanding unlicensed broadband into the 6 GHz band while also ensuring that licensed services that operate in the band continue to thrive. In Korea, the M/W band of 6 GHz has been reallocated to introduce unlicensed services in the 6 GHz band. Considering the national interests, the entire 1,200 MHz will be supplied for the indoor uses, but only the 500 MHz of the lower bandwidth (5925 ~ 6425 MHz) will for the outdoor uses under the limited power to protect the incumbent services. The introduction of unlicensed devices is being actively promoted through the reallocation of the 6 GHz M/W band, but since it is desperately necessary to prepare technical requirements to operate them in Korea. In this paper, the US 6 GHz unlicensed rules has been analyzed, these results will be utilized for establishing Korean technical standards with the unlicensed spectrum expansion.

Design and Fabrication of Quadruple Band Antenna with DGS (DGS를 적용한 4중대역 안테나의 설계 및 제작)

  • Kim, Min-Jae;Choi, Tea-Il;Choi, Young-Kyu;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • In this paper, we propose a quadruple band antenna for GPS/WLAN/WiMAX application. The proposed antenna has quadruple band characteristics by considering the interconnection of four strip lines and DGS on the ground place. The total substrate size is 20.0 mm (W1) ⨯27.0 mm (L1), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 20.0 mm (W2)⨯ 27.0 mm (L8 + L6+ L10) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 60 MHz (1.525 to 1.585 GHz) bandwidth for GPS band, 825 MHz (3.31 to 4.135 GHz) bandwidth for WiMAX band and 480 MHz (2.395 to 2.975 GHz) and 385 MHz (5.10 to 5.485 GHz) bandwidth for WLAN band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency of triple band as required.

High-Efficiency, High-Gain, Broadband Quasi-Yagi Antenna and Its Array for 60-GHz Wireless Communications

  • Ta, Son Xuat;Kang, Sang-Gu;Han, Jea Jin;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • This paper introduces a high-efficiency, high-gain, broadband quasi-Yagi antenna, and its four-element array for use in 60-GHz wireless communications. The antenna was fed by a microstrip-to-slotline transition consisting of a curved microstripline and a circular slot to allow broadband characteristics. A corrugated ground plane was employed as a reflector to improve the gains in the low-frequency region of the operation bandwidth, and consequently, to reduce variation. The single antenna yielded an impedance bandwidth of 49 to 69 GHz for $|S_{11}|$ <-10dB and a gain of >12.0 dBi while the array exhibited a bandwidth of 52 to 68 GHz and a gain greater than 15.0 dBi. Both proposed designs had small gain variations (${\pm}0.5$ dBi) and high radiation efficiency (>95%) in the 60-GHz bands. The features of the proposed antenna were validated by designing, fabricating, and testing a scaled-up configuration of the single antenna at the 15-GHz band. The measurements resulted in an impedance bandwidth of 13.0 to 17.5 GHz for $|S_{11}|$ <-10dB, a gain of 10.1 to 13.2 dBi, and radiation efficiency in excess of 88% within this bandwidth. Additionally, the 15-GHz antenna yielded quite symmetric radiation profiles in both E- and H-planes, with a high front-to-back ratio.

Analysis of Antenna Impact on Wide-band Indoor Radio Channel and Measurement Results at 1 GHz, 5.5 GHz, 10 GHz and 18 GHz

  • Santella, Giovanni
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.166-181
    • /
    • 1999
  • The object of this paper is to investigate the influence of antenna pattern on indoor radio channel characteristics. Different from previous works where this analysis was carried out at a fixed frequency using different antennas, in the present paper (where measurements were taken in a wide frequency range) the variation of the radiation pattern was caused by two factors: the change of the radiation pattern when the same antenna was used at different frequenicies and the use of different type of antennas. To carry out this analysis, frequency domain measurements of the indoor radio channel at 1 GHz, 5.5 GHz, 10 GHz and 18 GHz were collected. Measurements were taken using a network analyzer. Serveral re-alizations of the channel transfer function were obtained varying, for each measurement, the positon of the transmitter and keep-ing the receiver fixed. Estimate of the channel impulse response was obtained from the Inverse Fourier Transform (IFT) of the fre-quency response. The measurements were performed in an office enviroment with mostly metallic walls and inner separations. The obtained data were elaborated to obtain the power versus distance relationship, the Cummulative Distribution Functions(CDFs) of rms Delay Spread(DS) and of the 3 dB frequency correlation band-width. Finally, the 3 dB width of the frequency correlation func-tion has been empirically related to the inverse of the rms DS of the impulse response.

  • PDF

Design and fabrication on 7-11 GHz, Broadband MPM (7-11 GHz, 광대역 MPM 설계 및 제작)

  • Choi Gil-Woong;Lee Yu-Ri;Kim Ki-Ho;Choi Jin-Joo;So Joon-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, a broadband Microwave Power Module(MPM) operating at 7 - 11 GHz is designed and fabricated. The MPM consists of a SSA (Solid State Amplifier) and a conventional TWT (traveling Wave Tube). This combined module takes advantage of a low noise and high gain of SSA. The computer modeling and simulation of the SSA are designed by the use of the ADS (Advanced Design System) software. The SSA is designed by configurating the CSSDA (Cascaded Single Stage Distributed Amplifier). The broadband MPM is measured to be noise figure 8.3 - 10.02 dB at 7 - 11 GHz bandwidth, output power of 38.12 dBm at 9 GHz.

  • PDF

Design and Implementation of Active Diplexer Using Asymmetrical Coupled Microstrip Lines (비대칭 결합 마이크로스트립 선로를 이용한 능동 다이플렉서의 구현)

  • 윤현보;문승찬;최원영
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.11-17
    • /
    • 1993
  • An active diplexer can be realized by using a MESFET and 2-sections of asymmetrical coupled bandpass filter, where the admittance inverter parameters in equivalent circuit of asym- metrical coupled microstrip lines are given as a function of an fundamental design parameter of a bandpass filter. An experimental active diplexer was designed over 22 and 18 percent bandwidth centered at 9 GHz and 11 GHz respectively, and the design data was optimized by Super-Compact. The gain performance was $6.2\pm0.3$dB in each band of 8.3~9.6 GHz and 10.3~11.8 GHz The measured bandwidth of the active diplexer was closely matched to design data but measured gain was slightly lower (1.5 dB) than the designed value.

  • PDF

A 60GHz Wireless Cooperative Communication System Based on Switching Beamforming

  • Shi, Wei;Wang, Jingjing;Liu, Yun;Niu, Qiuna;Zhang, Hao;Wu, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1590-1610
    • /
    • 2016
  • The challenge of penetrating obstacles along with impact from weak multipath effects makes 60GHz signal very difficult to be transmitted in non-line of sight (NLOS) channel. So 60GHz system is vulnerable to obstructions and thus likely results in link interruption. While the application of cooperative technology to solve link blockage problemin 60GHz system should consider the characteristic of directional transmission for 60GHz signal. Therefore in this paper a system is proposed to solve the link blockage problem in 60GHz NLOS communication environment based on the concept of cooperation and also the beamforming technology, which is the basis of directional transmission for 60GHz communication system. The process of anti-blockage solution with cooperative communication is presented in detail, and the fast switching and recovery schemes are well designed. The theoretical values of symbol error rate (SER) using decode and forward (DF) cooperation and amplify and forward (AF) cooperation are presented respectively when the common channel interference exists. Simulation results demonstrate that the performance based on DF cooperation is better than the performance based on AF cooperation when directional transmission is used.