• Title/Summary/Keyword: 10-day rainfall

Search Result 235, Processing Time 0.025 seconds

Effect of Rainfall Time after Flowering on Grain Yield and Quality in Safflower (Carthamus tinctorius L.) (홍화 개화후 강우 시기가 종실 수량과 품질에 미치는 영향)

  • Park Jun-Hong;Park So-Deuk;Kim Se-Jong
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.340-343
    • /
    • 2006
  • This study was conducted to find out the effect of rainfall time on growth and seed quality in safflower. Rainfall was done artificially and the treatment of rainfall time was divided into 6 parts. Each rainfall treatment was done from the first day of flowering up to the fifth day after flowering, from sixth day after flowering to the tenth day after flowering, from the eleventh day after flowering to the fifteenth day after flowering, from sixteenth day after flowering to twentith day after flowering, from the twenty first day after flowering to the twenty fifth day after flowering and from twenty sixth day after flowering to thirtith day after flowering. Rainfall time after flowering did not affect disease occurrence on the upper part and flower bud of safflower, which were infected at were 3.3 and 1, respectively. Ripened grain found on the main stem and primary branch was 37.4% and 65.0% at first day to the fifth day and sixth day to the tenth day rainfall periods after flowering, respectively. Yield was decreased by 14% in the sixth day up to the tenth day and eleventh day up to the fifteenth day rainfall periods (282-281kg/10a) compared to the one under control (327kg/10a). Hunter's L value was 73.5 and 69.9 in twenty first up to the twenty fifth day and twenty sixth up to the thirtith day rainfall periods after flowering, which decreased significantly to 79.3 under non-rainfall period. Therefore, it can be concluded that the optimum harvest time is twenty fifth day after flowering to maintain seed quality at rainfall time and before harvesting period.

Characteristics of Rainfall Thresholds for the Initiation of Landslides at Chuncheon Province (춘천시에서 발생한 산사태 유발강우의 특성 분석)

  • Sang Ug, Kim;Kyong Oh, Baek
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.148-157
    • /
    • 2022
  • Every year, particularly during the monsoon rainy season, landslides at the Chuncheon province of South Korea cause tremendous damage to lives, properties, and infrastructures. More so, the high rainfall intensity and long rainfall days that occurred in 2020 have increased the water content in the soil, thereby increasing the chances of landslide occurrences. Besides this, the rainfall thresholds and characteristics responsible for the initiation of landslides in this region have not been properly identified. Therefore, this paper addresses the rainfall thresholds responsible for the initiation of landslides at Chuncheon from a regional perspective. Using data obtained from rainfall measurements taken from 2002 to 2011, we identify a threshold relationship between rainfall intensity and rainfall duration for the initiation of landslides. In addition, we identify the relationship between the rainfall intensity using a 3-day, 7-day, and 10-day antecedent rainfall observation. Specifically, we estimate the rainfall data at 8 sites where debris flow occurred in 2011 by kriging. Following this, the estimated data are used to construct the relationship between the intensity (I), duration (D), and frequency (F) of rainfall. The results of the intensity-duration-frequency (IDF) analysis show that landslides will occur under a rainfall frequency below a 2-year return period at two areas in Chuncheon. These results will be effectively used to design structures that can prevent the occurrence of landslides in the future.

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

Relationship between Rainfall Intensity and Slope Stability based on Numerical Analysis (수치해석에 의한 강우강도와 사면 안정성의 상관성 분석)

  • Lee, Min-Seok;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This study was conducted to characterize the relationship of rainfall intensity and slope stability by using numerical analysis. The maximum precipitation rate for 10 minutes, 1 hour and 1 day was determined as 28 mm, 70 mm and 271 mm, respectively, by investigating 36 years of KMA data. Then slope infiltration analysis was performed to obtain the ground water level in the slope by using computer programming SEEP/W, and slope stability analysis was done for each time step by using program SLOPE/W. The factor of safety was minimized when the slope was saturated under each rainfall intensity; the time required for saturation was 2 hours with 10 minutes rainfall intensity of 28 mm, 7 hours with 1 hour rainfall intensity of 70 mm and 3 days with 1 day rainfall intensity of 271 mm. When accumulated rainfall was 196 mm for the 10minutes rainfall intensity of 28 mm with duration of 2 hours, the factor of safety was decreased to 1.0, while accumulated rainfall of 468 mm and 820 mm for the 1 hour and 1 day rainfall intensity, respectively, was required to reach the factor of safety, 1.0. Since the normalized rainfall intensity was 13 mm and 1.9 mm for 1 hour and 1 day maximum rainfall, respectively, those results showed that the rainfall intensity could have a more effect on the slope stability than the accumulated rainfall.

Development of methodology for daily rainfall simulation considering distribution of rainfall events in each duration (강우사상의 지속기간별 분포 특성을 고려한 일강우 모의 기법 개발)

  • Jung, Jaewon;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.141-148
    • /
    • 2019
  • When simulating the daily rainfall amount by existing Markov Chain model, it is general to simulate the rainfall occurrence and to estimate the rainfall amount randomly from the distribution which is similar to the daily rainfall distribution characteristic using Monte Carlo simulation. At this time, there is a limitation that the characteristics of rainfall intensity and distribution by time according to the rainfall duration are not reflected in the results. In this study, 1-day, 2-day, 3-day, 4-day rainfall event are classified, and the rainfall amount is estimated by rainfall duration. In other words, the distributions of the total amount of rainfall event by the duration are set using the Kernel Density Estimation (KDE), the daily rainfall in each day are estimated from the distribution of each duration. Total rainfall amount determined for each event are divided into each daily rainfall considering the type of daily distribution of the rainfall event which has most similar rainfall amount of the observed rainfall using the k-Nearest Neighbor algorithm (KNN). This study is to develop the limitation of the existing rainfall estimation method, and it is expected that this results can use for the future rainfall estimation and as the primary data in water resource design.

Comparison of Precipitation Characteristics using Rainfall Indicators Between North and South Korea (강수지표를 이용한 남·북한 강수특성 비교)

  • Lee, Bo-Ram;Chung, Eun-Sung;Kim, Tae-Woong;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2223-2235
    • /
    • 2013
  • This study aimed to understand temporal and spatial trends of rainfall characteristics in South and North Korea. Daily rainfall observed at the 65 stations in South Korea between 1963 and 2010 and the 27 stations in North Korea between 1973 and 2010 were analyzed. Rainfall Indicators for amount, extremes, frequency of rainfall were defined. Province-based indicators in the recent 10 years (i.e., between 2001 and 2010) were compared to those in the past (i.e., between 1963/1973 and 2000 for South/North Korea). In the recent 10 years, all the indicators except for the number of wet days (NWD) and 200-yr frequency rainfall (Freq200) increased in South Korea and all the indicators except for the annual mean daily rainfall over wet days (SDII) and annual total rainfall amount (TotalDR) decreased in North Korea. Furthermore, we performed the Mann-Kendall trend test based on the annual indicators. In some stations, decreasing trends in the past and increasing trends in the recent 10 years were found, and such opposite trends between two periods suggest he limitation in predicting and analyzing the rainfall characteristics based on the average. Results from this study can be used in analyzing the impact of climate change and preparing adaptation strategies for the water resources management.

Abiotic effects on calling phenology of three frog species in Korea

  • Yoo, Eun-Hwa;Jang, Yi-Kweon
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.260-267
    • /
    • 2012
  • Calling behavior is often used to infer breeding patterns in anurans. We studied the seasonal and diel calling activities of anuran species in a wetland in central Korea to determine the calling season and to evaluate the effects of abiotic factors on male calling. Acoustic monitoring was used in which frog calls were recorded for a full day, once a week, throughout an entire year. Using acoustic monitoring, we identified three frog species in the study site. Males of Rana dybowskii called in late winter and early spring; we thus classified this species as a winter/spring caller. The results of binary logistic regression showed that temperature, relative humidity, and 1-day lag rainfall were significant factors for male calling in R. dybowskii. Temperature and relative humidity were important factors for the calling activity of R. nigromaculata, whereas 24-h rainfall and 1-day lag rainfall were not significant. Thus, we determined R. nigromaculata to be a summer caller independent of weather. In Hyla japonica, relative humidity, 24-h rainfall, and 1- day lag rainfall were significant for male calling, suggesting that this species is a summer caller dependent on local rain.

Influence of Boreal Summer Intraseasonal Oscillation on Korean Precipitation and its Long-Term Changes (여름철 계절안 진동이 한반도 강수에 미치는 영향 및 장기 변화 특성 연구)

  • Lee, June-Yi;Hsu, Pang-Chi;Moon, Suyeon;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.435-444
    • /
    • 2017
  • By analyzing Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) from May to September for 1951~2007, this study investigates impacts of two dominant boreal summer intraseasonal oscillation (BSISO) modes on precipitation over Monsoon Asia including Korea and long-term change of 10~20-day and 30~60-day ISO over Korea. It is shown that BSISO strongly modulates rainfall variability over the many part of Monsoon Asia including Korea. Korea tends to have more (less) rainfall during the phases 3~5 (7~8) of BSISO1 representing the canonical northward/northeastward propagating 30~60-day ISO and during the phases 6~8 (3~5) of BSISO2 representing the northward/northwestward propagating 10~20-day ISO. It is found that the 10~20-day ISO variability contributes to summer mean rainfall variability more than 30~60-day ISO over Korea. For the 57 years of 1951~2007, the correlation coefficient between the May to September mean precipitation anomaly and standard deviation of 10~20-day (30~60-day) ISO is 0.71 (0.46). It is further noted that there is a significant increasing trend in the 10~20-day and 30~60-day ISO variability in the rainy season during the period of 1951 to 2007.

Effects of Rainfall and Salinity on Reaeration (강우의 염분이 재폭기에 미치는 영향)

  • 최재성;연기석;김건흥;안상진
    • Water for future
    • /
    • v.21 no.3
    • /
    • pp.281-290
    • /
    • 1988
  • As the aeration is one of the most important roles for the purification of polluted water, aquatic aerobic microorganism makes use of aerated dissolved oxygen to decompose the pollutant and purify water. In this study, a reactor was operated in a laboratory to examine the effects of salinity and rainfall on reaeration and then a model was proposed to estimate the reaeration coefficient. From the results of the experiments, the reaeration coefficient, $k_2$($day^{-1}$), can be expressed by $k_2=k_{2f}+3.98667{\times}10^{-2}{\cdot}C+4.88437{\times}10^{-1}{\cdot}r\;where\;k_{2f}$ : the reaeration coefficient in the fresh water at $20{\circ}C,\;(day^{-1})$ C: chloride concentration, ($g/{\ell}$), r:rainfall intensity,(mm/hr) Accordingly, it is concluded that the rate of reaeration is proportional to the chloride concentration and rainfall intensity. Also, it is known that the rainfall intensity contributes to the overall oxygen balance in a body of water more significantly than the salinity.

  • PDF

Decadal Change in Rainfall During the Changma Period in Early-2000s (2000년대 초반 우리나라 장마기간 강수량의 십년 변화 특성)

  • Woo, Sung-Ho;Yim, So-Young;Kwon, Min-Ho;Kim, Dong-Joon
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.345-358
    • /
    • 2017
  • The decadal change in rainfall for Changma period over the South Korea in early-2000s is detected in this study. The Changma rainfall in P1 (1992~2002) decade is remarkably less than in P2 (2003~2013) decade. The much rainfall in P2 decade is associated with the increase of rainy day frequency during Changma period, including the frequent occurrences of rainy day with a intensity of 30 mm/day or more in P2 decade. This decadal change in the Changma rainfall is due to the decadal change of atmospheric circulation around the Korean Peninsula which affects the intensity and location of Changma rainfall. During P2 decade, the anomalous anti-cyclone over the south of the Korean Peninsula, which represents the expansion of the North Pacific high with warm and wet air mass toward East Asia, is stronger than in P1 decade. In addition, the upper level zonal wind and meridional gradient of low-level equivalent potential temperature in P2 decade is relatively strengthened over the northern part of the Korean Peninsula than in P1 decade, which corresponds with the intensification of meridional gradient between air mass related to the East Asian summer monsoon nearby the Korean Peninsula in P2 decade. The enhanced meridional gradient of atir mass during P2 decade is favorable condition for the intensification of Changma rainfall band and more Changma rainfall. The atmospheric conditions related to enhanced Changma rainfall during P2 decade is likely to be influenced by the teleconnection linked to the suppressed convection anomaly over the southern part of China and South China Sea in P2 decade.