• Title/Summary/Keyword: 1-mass model

Search Result 2,104, Processing Time 0.03 seconds

Mathematical simulation of surfactant flushing process to remediate diesel contaminated sand column

  • Asadollahfardi, Gholamreza;Darban, Ahmad Khodadadi;Noorifar, Nazila;Rezaee, Milad
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.213-224
    • /
    • 2016
  • This paper presents a numerical model based on a UTCHEM simulator to simulate surfactant flushing process to remediate diesel contaminated sand column. For this purpose, we modeled remediation process under 10000 and 20000 ppm initial concentrations of diesel. Various percent-mass sodium dodecyl sulfate (SDS) considered in our model. The model results indicated that 0.3 percent-mass of SDS at 10000 ppm and 0.1 percent-mass of SDS at 20000 ppm initial diesel concentration had maximum removal perdition which is in agreement with the experiment results. For 10000 ppm diesel concentrations, the coefficient of determination ($R^2$) and index of agreement (IA) between the model result and the experimental data were 0.9952 and 0.9695, respectively, and for 20000 ppm diesel concentrations, $R^2$ and IA were 0.9977 and 0.9935, respectively. The sensitivity analysis of permeability illustrated that in all diesel concentrations and SDS percent-mass with increasing permeability the model resulted in more removal efficiency.

Simulative Calculations of Food Waste Reduction Using Kineto-transport Models (동력학-전달 모델을 활용한 식품 폐기물 감량 해석)

  • Cho, Sun-joo;Kim, Tae-wook;Kwon, Sung-hyun;Cho, Daechul
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.429-439
    • /
    • 2021
  • Food waste is both an industrial and residential source of pollution, and there has been a great need for food waste reduction. As a preliminary step in this study, waste reduction is quantitatively modeled. This study presents two models based on kinetics: a simple kinetic model and a mass transport-shrinking model. In the simple kinetic model, the smaller is the reaction rate constant ratio k1, the lower the rate of conversion from the raw material to intermediate products. Accordingly, the total elapsed reaction time becomes shorter. In the mass transport-shrinking model, the smaller is the microbial decomposition resistance versus the liquid mass transfer resistance, the greater is the reduction rate of the radius of spherical waste particles. Results showed that the computed reduction of waste mass in the second model agreed reasonably with that obtained from a few experimantal trials of biodegradation, in which the microbial effect appeared to dominate. All calculations were performed using MATLAB 2020 on PC.

Measurement of Vapor Pressure of HFC-404a and Polyol ester Mixture System (HFC-404a와 Polyol ester 오일 혼합물의 증기압 측정)

  • Park, Young-Moo;Kim, Rock-Hyun
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.203-211
    • /
    • 2009
  • Vapor pressure of HFC-404a and polyol ester system were measured at 56 points from 263.15 to 323.15 K and from 0 to 90 mass %polyol ester. It was found that below 273.15 K, the effect of the polyol ester on the vapor pressure was negligible up to 30 mass % polyol ester. The vapor pressure of the system significantly decreased as the mass fraction of polyol ester increased over 50 percent. Raoult's model and Flory-Huggins model were tested for data reduction. Empirical vapor pressure equations were obtained in terms of temperature and mass fraction of polyol ester.

Engine Modeling and Validation for Control System Design of a Gaseous-fuel Engine (기체연료엔진의 제어시스템 설계를 위한 엔진 모델링 및 검증)

  • 심한섭;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.7-17
    • /
    • 2003
  • Highly accurate control of an air-fuel ratio is very important to reduce exhaust gas emissions of gaseous-fuel engines. In order to achieve this purpose, a precise engine model is required to estimate engine performance from the engine design process which is applied to the design of an engine controller. Engine dynamics are considered to develop a dynamic engine model of a gaseous-fuel engine. An effective air mass ratio is proposed to study variations of the engine dynamics according to the water vapor and the gaseous-fuel in the mixture. The dynamic engine model is validated with the LPG engine under steady and transient operating conditions. The experimental results in the LPG gaseous-fuel engine show that the estimation of the air flow and the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal engine model.

Rigorous Model for Spherical Cell-support Aggregate

  • Moon, Seung-Hyeon;Lee, Ki-Beom;Satish J. Paruekar
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.42-50
    • /
    • 2001
  • The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

  • PDF

Investigation Into Optimal Installation Position of TMD for Efficient Seismic Response Reduction of Retractable-Roof Spatial Structure (개폐식 대공간 구조물의 효율적인 지진응답제어를 위한 TMD의 최적 설치 위치 분석)

  • Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • In this study, TMD(Tuned Mass Damper) is installed in a retractable-roof spatial structure in order to investigate dynamic response characteristics according to mass ratio and installed position of TMD on large spatial structures. The example analytical model is generated based on the Singapore sports hub stadium. Twenty eight analytical models are used to investigate optimal installation position of TMD for the example retractable-roof spatial structure using 4 to 16 TMDs. The mass of one TMD is set up 1% of total mass at the example analytical model. Displacement response ratio of model with TMD is compared with that of base model without TMD. It has been found from numerical simulation that it is more effective to install TMD at the edge of the spatial structure rather than to concentrate the TMD at the center of the spatial structure.

CHARACTERIZATION OF POOL-RIFFLE SEQUENCES IN SOLUTE TRANSPORT MODELING OF STREAMS

  • Seo, Il-Won;Yu, Dae-young
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.171-185
    • /
    • 2000
  • A mathematical model to adequately predict complex mixing characteristics of sorptive polluants in natural streams with pools-and-riffes has been developed. In this model, sorption of pollutants onto the bed sediment as well as mass storage and exchange in the storage zones were incorporated into one-dimensional mass balance equatins. The geometric and hydraulic characteristics of the pool-riffle sequences were properly conceptualized. Simulations with parameters of pool-and-riffle streams better fit the measured data in overall shape and peak concentration than simulations with parameters for uniform channels. The analyses on the characteristics of the storage zone model parameters reveal that a linear relationship between the logrithm of the storage zone volume ratio and a function of the friction factor exists. A linear relatiohship might also be tenatively assumed between the logarithm of the dimensionless mass exchange coefficient and the logarithm of the aspect ratio of the storage zone if some of the high values of the dimensionless mass exchange coefficient collected on the successive bed forms are excluded.

  • PDF

Investigation on the Selection of Capillary Tube for the Alternative Refrigerant R-407C

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • The capillary tube performance for R-407C is experimentally investigated. The experimental setup is a real vapor-compression refrigerating system. Mass flow rate is measured for various diameter and length while inlet pressure and degree of subcooling are changed. These data are compared with the results of a numerical model. The mass flow rate of the numerical model is about 14% less than the measured mass flow rate. It is found that mass flow rate and length for R-407C are less than those for R-22 under the same condition. Based on this experimental study and the numerical model, a set of design charts for capillary tube of R-407C is proposed.

  • PDF

The Effects of Mass Loss on the Pre-Main Sequence Evolutionary Tracks of Stein's Model Stars

  • Um, In-Kyung
    • Publications of The Korean Astronomical Society
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • Under the context of Stein's linear theory of stellar models, the luminosity-effective temperature relationship is derived for contracting pre-main sequence stars which are losing mass, according to the empirical formula, given by Reimers (1975). The effects of mass loss on their evolution are investigated by calculating evolutionary tracks of 1. $1.5M_{\odot}$, $5M_{\odot}$, and $10M_{\odot}$, stars. Our calculations reveal that the effects of mass loss show up in the radiative equilibrium stage of the evolution. It is found that an increase of mass loss rate leads to delay the onset of radiative equilibrium, thus resulting in under-luminous main sequence stars. It is also noted that the mass loss prolongs the pre-main sequence life time. Detailed results of the calculations are discussed.

  • PDF

A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission

  • Kim, Jin-Seop;Kim, Geon-Young;Baik, Min-Hoon;Finsterle, Stefan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to propose a new approach for quantifying in situ rock mass damage, which would include a degree-of-damage and the degraded strength of a rock mass, along with its prediction based on real-time Acoustic Emission (AE) observations. The basic approach for quantifying in-situ rock mass damage is to derive the normalized value of measured AE energy with the maximum AE energy, called the degree-of-damage in this study. With regard to estimation of the AE energy, an AE crack source location algorithm of the Wigner-Ville Distribution combined with Biot's wave dispersion model, was applied for more reliable AE crack source localization in a rock mass. In situ AE wave attenuation was also taken into account for AE energy correction in accordance with the propagation distance of an AE wave. To infer the maximum AE energy, fractal theory was used for scale-independent AE energy estimation. In addition, the Weibull model was also applied to determine statistically the AE crack size under a jointed rock mass. Subsequently, the proposed methodology was calibrated using an in situ test carried out in the Underground Research Tunnel at the Korea Atomic Energy Research Institute. This was done under a condition of controlled incremental cyclic loading, which had been performed as part of a preceding study. It was found that the inferred degree-of-damage agreed quite well with the results from the in situ test. The methodology proposed in this study can be regarded as a reasonable approach for quantifying rock mass damage.