• Title/Summary/Keyword: 1-ethyl-3-methylimidazolium tetrafluoroborate(EMI-$BF_4$)

Search Result 4, Processing Time 0.019 seconds

The analytical study on synthesis and purification of high purity ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (이온성 액체 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4)의 합성과 정제에 관한 분석 연구)

  • Yang, Kyung-Chul;Lee, Young-Hwan
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.477-483
    • /
    • 2011
  • This work is on the synthesis of EMI-$BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate) and purification of spectroscopic grade using aluminium oxide method, activated charcoal method, and liquid/liquid fractional extraction method in order to make supercapacitor finally. But the aluminum oxide method and the activated charcoal method were not suitable for obtaining high-purity ionic liquids. The liquid/liquid fractional distillation method turned out that as the concentration of solvent ($H_2O$) was increased, the higher purity of EMI-$BF_4$ was obtained and the electrical capacity of this compound was increased to higher value. When the solvent was changed to from methylene chloride to 1,2-dichloroethane, the higher purity of EMI-$BF_4$ was obtained.

The Analytical Study on Synthesis and Optimization of Purification of Ionic Liquid, 1-ethyl-3-methylimidazolium Tetrafluoroborate (이온성 액체 1-ethyl-3-methylimidazolium Tetrafluoroborate의 정제 최적화 조건에 따른 특성 변화 분석 연구)

  • Yang, Kyung-Chul;Chun, Kyung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.103-107
    • /
    • 2013
  • In this study, the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate (EMI-BF4) was synthesized and purified using the liquid/liquid fractional distillation method to apply a supercapacitor. EMI-BF4 was extracted with dichloromethane from the liquid/liquid extraction method in acidic, neutral, and alkali conditions for removal of impurity, and then the electrical capacities of the purified ionic liquids were measured and compared. The electrical capacities of ionic liquids under acidic condition showed higher value than those of neutral or alkali conditions. As the ratio of ionic liquid to solvent became higher, the electrical capacity value was increased.

High Voltage Performance of the Electrical Double Layer Capacitor with Various Electrolytes (다양한 전해액을 적용한 전기이중층 커패시터의 고전압 특성 연구)

  • Kim, Jung Wook;Choi, Seung-Hyun;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.34-40
    • /
    • 2017
  • Electric double layer capacitors (EDLC: electric double layer capacitors) have drew attention as an energy storage device for the next generation because of their outstanding power capability and durability. But their usage is somewhat limited due to low energy density over secondary batteries. One of methods to improve the energy of EDLC is expanding the voltage window of cell operation by increasing the charge cut-off voltage. In this study, $SBP-BF_4$ (spirobipyrrolidinium tetrafluoroborate), $TEA-BF_4$ (tetraethylammonium tetraflouroborate) and $EMI-BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate) in AN (acetonitrile) were selected to evaluate the possibility of application at high voltage environment. The LSV (linear sweep voltammetry) measurements showed that the 1.5M SBP-BF4/AN electrolyte was stable over a wide potential window and showed the best electrochemical performance compared to other combinations of electrolytes at high voltage environments (over 3.0 V). Furthermore, TMSP (tris(trimethylsilyl) phosphite) was applied to 1.5M SBP-BF4/AN in order to maintain stable performance at high voltage for the long period of time. The electrolyte with TMSP additive showed the capacity retention of 93% after 10,000 cycles at 3.3 V.

Study for Addition Effect of Propylene Carbonate to 1-ethyl-3-methylimidazolium in Electric Double Layer Capacitors (Propylene Carbonate 첨가된 1-ethyl-3-methylimidazolium의 전기이중층 커패시터에서의 효과)

  • Kim, Hyun-Chul;Yang, Jeong-Jin;Kim, Han-Joo;Sin, Dal-Woo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Because the ionic liquid added with Propylene carbonate(PC) at room temperature has lower viscosity than original, we considered electrochemical behavior of it in EDLC. The ionic liquid without PC which does not have ions has no problem in capacity since it has enough ions. The electrolyte resistance was decreased with decreasing viscosity. As a result of identifying high current discharge capacity, we observed that the ionic liquid had capacity of 73.12% at current density of $80\;mA/cm^{-2}$, but it increased to 81.94% at PC content of 40 vol%.