• Title/Summary/Keyword: 1-commutative algebra

Search Result 83, Processing Time 0.022 seconds

TRACE-CLASS INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo;Kang, Joo-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.63-69
    • /
    • 2002
  • Given vectors x and y in a Hilbert space, an intepolating operator is a bounded operator T such that Tx=y. an interpolating operator for n vectors satisfies the equation Tx$_{i}$=y, for i=1, 2,…, n. In this article, we obtained the fellowing : Let x = (x$_{i}$) and y = (y$_{i}$) be two vectors in H such that x$_{i}$$\neq$0 for all i = 1, 2,…. Then the following statements are equivalent. (1) There exists an operator A in AlgL such that Ax = y, A is a trace-class operator and every E in L reduces A. (2) (equation omitted).mitted).

A NOTE OF PI-RINGS WITH RESTRICTED DESCENDING

  • Hong, Chan-Yong
    • The Pure and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • In this paper, some properties for a PI-ring satisfying the descending chain condition on essential left ideals are studied: Let R be a ring with a polynomial identity satisfying the descending chain condition on essential ideals. Then all minimal prime ideals in R are maximal ideals. Moreover, if R has only finitely many minimal prime ideals, then R is left and right Artinian. Consequently, if every primeideal of R is finitely generated as a left ideal, then R is left and right Artinian. A finitely generated PI-algebra over a commutative Noetherian ring satisfying the descending chain condition on essential left ideals is a finite module over its center.(omitted)

  • PDF

On spanning column rank of matrices over semirings

  • Song, Seok-Zun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.337-342
    • /
    • 1995
  • A semiring is a binary system $(S, +, \times)$ such that (S, +) is an Abelian monoid (identity 0), (S,x) is a monoid (identity 1), $\times$ distributes over +, 0 $\times s s \times 0 = 0$ for all s in S, and $1 \neq 0$. Usually S denotes the system and $\times$ is denoted by juxtaposition. If $(S,\times)$ is Abelian, then S is commutative. Thus all rings are semirings. Some examples of semirings which occur in combinatorics are Boolean algebra of subsets of a finite set (with addition being union and multiplication being intersection) and the nonnegative integers (with usual arithmetic). The concepts of matrix theory are defined over a semiring as over a field. Recently a number of authors have studied various problems of semiring matrix theory. In particular, Minc [4] has written an encyclopedic work on nonnegative matrices.

  • PDF

CLASSIFICATION OF CLIFFORD ALGEBRAS OF FREE QUADRATIC SPACES OVER FULL RINGS

  • Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.11-15
    • /
    • 1985
  • Manddelberg [9] has shown that a Clifford algebra of a free quadratic space over an arbitrary semi-local ring R in Brawer-Wall group BW(R) is determined by its rank, determinant, and Hasse invariant. In this paper, we prove a corresponding result when R is a full ring.Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is non-degenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$(V,R) induced by B is an isomorphism), and with a quadratic mapping .phi.: V.rarw.R such that B(x,y)=1/2(.phi.(x+y)-.phi.(x)-.phi.(y)) and .phi.(rx) = $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U9R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$,.., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2 we reserve the notation [a $a_{11}$, $a_{22}$] for the space. A commutative ring R having 2 a unit is called full [10] if for every triple $a_{1}$, $a_{2}$, $a_{3}$ of elements in R with ( $a_{1}$, $a_{2}$, $a_{3}$)=R, there is an element w in R such that $a_{1}$+ $a_{2}$w+ $a_{3}$ $w^{2}$=unit.TEX>=unit.t.t.t.

  • PDF

THE WEAK F-REGULARITY OF COHEN-MACAULAY LOCAL RINGS

  • Cho, Y.H.;Moon, M.I.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.175-180
    • /
    • 1991
  • In [3], [4] and [5], Hochster and Huneke introduced the notions of the tight closure of an ideal and of the weak F-regularity of a ring. This notion enabled us to give new proofs of many results in commutative algebra. A regular ring is known to be F-regular, and a Gorenstein local ring is proved to be F-regular provided that one ideal generated by a system of parameters (briefly s.o.p.) is tightly closed. In fact, a Gorenstein local ring is weakly F-regular if and only if there exists a system of parameters ideal which is tightly closed [3]. But we do not know whether this fact is true or not if a ring is not Gorenstein, in particular, a ring is a Cohen Macaulay (briefly C-M) local ring. In this paper, we will prove this in the case of an 1-dimensional C-M local ring. For this, we study the F-rationality and the normality of the ring. And we will also prove that a C-M local ring is to be Gorenstein under some additional condition about the tight closure.

  • PDF

UN RINGS AND GROUP RINGS

  • Kanchan, Jangra;Dinesh, Udar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.83-91
    • /
    • 2023
  • A ring R is called a UN ring if every non unit of it can be written as product of a unit and a nilpotent element. We obtain results about lifting of conjugate idempotents and unit regular elements modulo an ideal I of a UN ring R. Matrix rings over UN rings are discussed and it is obtained that for a commutative ring R, a matrix ring Mn(R) is UN if and only if R is UN. Lastly, UN group rings are investigated and we obtain the conditions on a group G and a field K for the group algebra KG to be UN. Then we extend the results obtained for KG to the group ring RG over a ring R (which may not necessarily be a field).

ON NONNIL-SFT RINGS

  • Ali Benhissi;Abdelamir Dabbabi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.663-677
    • /
    • 2023
  • The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let A be a commutative ring with unit and I be an ideal of A. We say that I is SFT if there exist an integer k ≥ 1 and a finitely generated ideal F ⊆ I of A such that xk ∈ F for every x ∈ I. The ring A is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of A) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

Fifth Graders' Understanding of Variables from a Generalized Arithmetic and a Functional Perspectives (초등학교 5학년 학생들의 일반화된 산술 관점과 함수적 관점에서의 변수에 대한 이해)

  • Pang, JeongSuk;Kim, Leena;Gwak, EunAe
    • Communications of Mathematical Education
    • /
    • v.37 no.3
    • /
    • pp.419-442
    • /
    • 2023
  • This study investigated fifth graders' understanding of variables from a generalized arithmetic and a functional perspectives of early algebra. Specifically, regarding a generalized perspective, we included the property of 1, the commutative property of addition, the associative property of multiplication, and a problem context with indeterminate quantities. Regarding the functional perspective, we covered additive, multiplicative, squaring, and linear relationships. A total of 246 students from 11 schools participated in this study. The results showed that most students could find specific values for variables and understood that equations involving variables could be rewritten using different symbols. However, they struggled to generalize problem situations involving indeterminate quantities to equations with variables. They also tended to think that variables used in representing the property of 1 and the commutative property of addition could only be natural numbers, and about 25% of the students thought that variables were fixed to a single number. Based on these findings, this paper suggests implications for elementary school students' understanding and teaching of variables.

ON NONNIL-m-FORMALLY NOETHERIAN RINGS

  • Abdelamir Dabbabi;Ahmed Maatallah
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.611-622
    • /
    • 2024
  • The purpose of this paper is to introduce a new class of rings containing the class of m-formally Noetherian rings and contained in the class of nonnil-SFT rings introduced and investigated by Benhissi and Dabbabi in 2023 [4]. Let A be a commutative ring with a unit. The ring A is said to be nonnil-m-formally Noetherian, where m ≥ 1 is an integer, if for each increasing sequence of nonnil ideals (In)n≥0 of A the (increasing) sequence (∑i1+⋯+im=nIi1Ii2⋯Iim)n≥0 is stationnary. We investigate the nonnil-m-formally Noetherian variant of some well known theorems on Noetherian and m-formally Noetherian rings. Also we study the transfer of this property to the trivial extension and the amalgamation algebra along an ideal. Among other results, it is shown that A is a nonnil-m-formally Noetherian ring if and only if the m-power of each nonnil radical ideal is finitely generated. Also, we prove that a flat overring of a nonnil-m-formally Noetherian ring is a nonnil-m-formally Noetherian. In addition, several characterizations are given. We establish some other results concerning m-formally Noetherian rings.