• 제목/요약/키워드: 1 MVA

검색결과 132건 처리시간 0.03초

22.9kV/50MVA급 고온초전도 전력케이블의 DC Ic 측정 및 교류손실에 관한 연구 (The study on the DC Ic measurement and AC loss in the 22.9kV, 50MVA HTS power cable)

  • 최석진;이상진;심기덕;조전욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.808-809
    • /
    • 2008
  • 22.9kV 50MVA HTS power cable has been developed and tested by Korea Electrotechnology Research Institute and LS Cable Company and it was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program. In this paper, DC Ic of 100m HTS cable which is installed at Kochang testing station was measured and analyzed. A measurement technique of DC Ic used by resistance and inductance removal method is established. The HTS power cable is composed of 2 layers for transmission and 1 layer for shield. For the analysis of AC losses in an HTS power cable, 2-dimensional numerical calculation was carried out to define the magnetic field distribution. We calculated the magnetization losses in the HTS core of that cable from these fields. These calculated results are in accordance with those of experiment.

  • PDF

대용량 초전도 변압기 권선용 다중선재의 특성 (Characteristics of Multiply Laminated HTS tapes for the Windings of Large Power Superconducting Transformers)

  • 김우석;이승욱;황영인;장데레사;이희균;홍계원;최경달;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1216-1218
    • /
    • 2005
  • A high temperature superconducting power transformer gets its advantages over the conventional ones when the rated capacity of the HTS transformer becomes 30 MVA or more. The standard capacity of the recent 154 kV/ 22.9 kV power transformer is 3 phase 60 MVA in Korea which means that the rated current of the secondary becomes more than 1,500 amps. Considering the current capacities of the HTS wires being developed recently, it is inevitable to use the HTS wires in parallel in order to be applied to the power transformer. But nonuniform distribution of currents and large AC losses are major problems in parallel HTS windings setting aside the difficulties of making parallel windings. To solve these problems, several kinds of multiply laminated HTS wires were fabricated and tested for the application of these multiple wire to an HTS power transformer. Test results were compared with that of each other and the best were selected for the application to an HTS power transformer.

  • PDF

22.9kV/50MVA급 고온초전도 전력케이블의 교류손실 (The AC loss of 22.9kV/50MVA High-Tc Superconducting Power Cable)

  • 최석진;이상진;심기덕;조전욱;이수길;양병모;윤형희
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.31-34
    • /
    • 2009
  • An HTS power cable is generally composed of 2 layers for conducting and 1 layer for shielding. For the analysis of AC loss of an HTS power cable, 2-dimensional magnetic field analysis is carried out. The magnetization loss in HTS cable core was calculated, and the transport current loss was obtained from the monoblock equation and the elliptical Norris Equation. And the total AC loss of the cable was expected by the sum of magnetization loss and transport current loss. The variation of ac loss with respect to the gap and uncertain factor between the superconducting tapes was investigated, and the ac loss of 22.9kV/50MVA high-Tc superconducting power cable was calculated. These results well agree with those of experiment.

국내 초전도 한류기 요구와 하이브리드 초전도 한류기 (Domestic Efforts for SFCL Application and Hybrid SFCL)

  • 현옥배;김혜림;임성우;심정욱;박권배;오일성
    • Progress in Superconductivity
    • /
    • 제10권1호
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

특고압 가스 절연 부하 개폐기의 통합형 대전력 시험 방법 및 회로 구성에 관한 연구 (A Study on the Construction of Test circuit and Unification of Experiment Method for High Voltage Gas-insulated Load Switch using High Power Testing System)

  • 정흥수;김민영;김준석
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.36-46
    • /
    • 2008
  • 본 논문은 대전력시험설비를 이용한 특고압 가스 절연 부하 개폐기의 대전력 시험회로의 구성과 통합형 시험 방법에 관하여 연구하였다. 대전력시험설비는 전기기기의 전기적 및 기계적인 성능을 검증하는 설비로서 단락발전기, 보호차단기, 투입스위치, 임피던스, 고압변압기, 저압변압기, 측정 및 보호시스템 등으로 구성되며, 이 시스템을 이용하여 단시간전류시험, 전류개폐용량시험, 단락투입 및 차단시험 등을 실시한다. 특고압 가스 절연 부하 개폐기의 규격으로는 국내 배전계통에 적용되는 ES(한국전력공사 표준규격) 5925-0002가 있으며, 국제 규격으로는 IEC 60265-1, 62271-1 및 IEEE C 37.74 등이 있다. 본 논문에서는 여러 규격에 각각 규정되어 있는 시험 절차, 시험회로 구성 및 시험 방법 등을 통합하여 600[MVA]급 대전력 시험설비에 적용하였다.

단위 인버터 병렬운전에 의한 발전소 해수펌프 적용(II) (Studies on the application of unit-inverter parallel operation to sea-water pump in power plant(II))

  • 김수열;류홍우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.290-294
    • /
    • 1997
  • 서인천복합화력발전소의 해수펌프를 속도제어 하여 소내 소비 전력을 절감하고 전동기의 직입기동에 의한 스트레스를 줄이기 위하여 생산기술 개발 과제의 연구개발품 2MVA GTO 인버터를 실증 적용하였다. 적용 시스템은 단위 인버터 병렬운전으로 인버터의 입력측은 병렬다중 방식, 출력측은 직렬다중 방식으로 설계하였다. 인버터에 의한 운전 자료를 기준으로 소비전력을 산정하여 비교하였으며 그 적용 방법과 결과를 보인다[1][2].

  • PDF

30kVA 초전도발전기의 회전자 개발과 냉각 특성 (Development and Cooling Properties of 30kVA Superconducting Rotor)

  • 손명환;권영길;백승규;고락길;이언용;하동우;조영식;김경한;류강식
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.142-145
    • /
    • 1999
  • For the first time in Korea, a 30kVA superconducting generator has been designed, developed and successfully tested recently. This is the forerunner of a 1MVA superconducting generator which is currently under development. The paper discusses the design, development and cooling experience of a superconducting rotor. This has 3 passages of the recovered Helium gas and a gas flow control system.

  • PDF

관성부하를 이용한 전동차용 VVVF인버터의 모의주행 및 과도상태시험 (A Running and Transient state Test of VVVF Inverter using A Inertia Load in Electric car)

  • 정만규;정기찬;고영철;방이석;서광덕
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.282-286
    • /
    • 1999
  • This paper presents a vector control of parallel drive, a beatless control and a low switching PWM technique for the propulsion system of Electric car as transient state which are included interrupting line voltage, changing line voltage slowly, suddenly, regenerating light load and starting from backward running. Improved performance and a validation of proposed method is shown by the experimental results using a 1.65MVA IGBT VVVF inverter and inertia load equivalent to 160 tons electric cars through a running and transient state test.

  • PDF

전동차용 고효율 저주파 동기 PWM을 이용한 관성부하 시험 (A Inertia Load Test using a Low Frequency Synchronous PWM Technique of high efficiency for Electric car.)

  • 이광주;정만규;고영철;장성영;방이석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.233-240
    • /
    • 1998
  • This paper presents a high efficiency low switching PWM technique for the propulsion system of Electric car. In order to achieve the continuous voltage control to six-step and a low harmonics with low switching frequency under 500㎐, the synchronous technique is combined with a space vector overmodulation and implemented by using DSP. Improved performance and a validation of proposed method is shown by the experimental results using a 1.65MVA IGBT VVVF inverter and inertia load equivalent to 160 tons electric cars.

  • PDF

Design of 1 MVA Single Phase HTS Transformer with Pancake Windings Cooled by Natural Convection of Sub-cooled Liquid Nitrogen

  • Kim, Woo-Seok;Kim, Sung-Hoon;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Lee, Don-Kun;Park, Yeon-Suk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.34-37
    • /
    • 2003
  • A 1 MVA single-phase high temperature superconducting (HTS) transformer with BSCCO-2223 wire was designed in this paper. The rated voltages of each sides of the transformer are 22.9 kV and 6.6 kV respectively. Double pancake HTS windings arranged reciprocally will be used for the transformer windings, because of the advantages of insulation and distribution of surge voltage in case of a large power and high voltage transformer. Single HTS wire was used for the primary windings and four parallel wires were used for the secondary windings of the transformer with transposition. A core of the transformer was designed as a shell type core separated with the windings by a cryostat made of GFRP with a room temperature bore. The operating temperature of the HTS windings will be about 65K with sub-cooled liquid nitrogen. A cryogenic cooling system using a GM-cryocooler for this HTS transformer by natural convection of liquid nitrogen was designed. This type of cooling system can be a good option for compactness, efficiency, and reliability of the HTS transformer.