• Title/Summary/Keyword: 1,8-ANS

Search Result 81, Processing Time 0.021 seconds

Kinetic Analysis about the Bidirectional Transport of 1-Anilino-8-naphthalene Sulfonate (ANS) by Isolated Rat Hepatocytes

  • Lee, Pung-Sok;Song, Im-Sook;Shin, Tae-Ha;Chung, Suk-Jae;Shim, Chang-Koo;Song, Sukgil;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.26 no.4
    • /
    • pp.338-343
    • /
    • 2003
  • The purpose of the present study was to investigate the bidirectional transport of 1-anilino-8-naphthalene sulfonate (ANS) using isolated rat hepatocytes. The initial uptake rate of ANS by isolated hepatocytes was determined. The uptake process of ANS was saturable, with a $K_m of 29.1\pm3.2 \mu M and V_{max} of 2.9\pm0.1$ mmol/min/mg protein. Subsequently, the initial efflux rate of ANS from isolated hepatocytes was determined by resuspending preloaded cells to 3.0% (w/v) BSA buffer. The efflux process for total ANS revealed a little saturability. The mean value of the efflux clearance was $2.2\pm0.1 \mu$ L/min/mg protein. The efflux rate of ANS from hepatocytes was markedly decreased at $4^{\circ}C$, indicating that the apparent efflux of ANS might not be attributed to the release of ANS bound to the cell surface, but to the efflux of ANS from intracellular space. The efflux clearance was furthermore corrected for the unbound intracellular ANS concentration on the basis of its binding parameters to cytosol. The relation between efflux rate and unbound ANS concentration was fitted well to the Michaelis-Menten equation with a saturable and a nonsaturable components. The $V_{max} and K_m$ values were 0.54 mmol/min/mg protein, and 10.0 $\mu$ M, respectively. Based on the comparison of the ratios of $V_{max} to K_m (V_{max}/K_m)$ corresponding to the transport clearance, the influx clearance was two times higher than the efflux clearance. Together with our preliminary studies that ATP suppression in hepatocytes substantially inhibited ANS influx rate, we concluded that the hepatic uptake of ANS is actively taken up into hepatocytes via the carrier mediated transport system.

Kinetic Analysis of the Hepatic Uptake and Biliary Excretion of 1-Anilino-8-Naphthalene Sulfonate (ANS) in Vivo (In Vivo 레벨에서 1-아닐리노-8-나프탈렌 설포네이트(ANS)의 간내 이행 및 담즙배설 과정의 속도론적 해석)

  • Bae, Woong-Tak;Chung, Youn-Bok;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.209-216
    • /
    • 2001
  • The purpose of the present study was to investigate the hepatic uptake and biliary excretion of l-anilino-8-naphthalene sulfonate (ANS) in vivo. The plasma concentration and liver concentration of ANS were determined after its i.v. bolus administration at a dose of $30\;{\mu}mol/kg$ in rats. The hepatic uptake clearance $(CL_{uptake})$ of ANS was 0.1 ml/min/g liver. On the basis of the unbound concentration of ANS, the permeability-surface area product $(PS_{influx})$ was calculated to be l0.4 ml/min/g liver, being comparable of in vitro data. On the other hand, we determined the plasma concentration, liver concentration and biliary excretion rate of ANS at steady-state after its i. v. infusion $(0.2-1.6\;{\mu}mol/min/kg)$ in rats. The excretion clearance $(CL_{excretion})$ of ANS showed Michaelis-Menten kinetics with increasing the infusion rate. The permeability-surface area product $(PS_{excretion})$ based on the unbound concentration in the liver was calculated to be 0.0165 ml/min/g liver, which is negligible compared with the intrinsic clearance $(CL_{int}=3.3\;ml/min/g\;liver)$ by rat liver microsomes. The sequestration process of ANS, therefore, was considered to be mainly due to the metabolic process in the liver $(PS_{seq}{\risingdotseq}CL_{int})$. Furthermore, $PS_{efflux}$ value calculated from $PS_{influx}$ and $PS_{seq}$ was 4.4 ml/min/g liver, which was comparable of in vitro data. In conclusion, in vivo parameters such as $PS_{influx}$, $PS_{efflux}$ and $PS_{seq}$ in the present study showed good in vivo-in vitro relationship. Thus, the kinetic analysis method proposed in the present study would be useful to analyze the hepatic transport of drugs in vivo.

  • PDF

Drug-Biomacromolecule Interaction (III) 1-Anilinonaphthalene-8-sulfonate Binding to Bovine Serum Albumin by Fluorescence (약물과 생체 고분자간의 상호작용(III) 형광측정법에 의한 1-Anilinonaphthalene-8-sulfonate와 Bovine Serum Albumin간의 결합에 관한 연구)

  • 김종국;안해영;양지선;김양배;유병설
    • YAKHAK HOEJI
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 1982
  • The binding of the 1-anilinonaphthalene-8-sulfonate(ANS) to bovine serum albumin was studied by fluorescence spectroscopy. The effect of pH, ionic strength, and protein concentration on the binding of ANS to protein were compared. The binding between ANS and protein was dependent on pH and ionic strength. It seems that both hydrophobic binding and some electrostatic forces are involved in the binding of ANS to protein. The binding constants for ANS increased with increasing protein concentration. This suggests the possibility of a sharing of one ANS molecule by more than one protein molecule at relatively high protein concentration.

  • PDF

Interactions between Water-Soluble Polyparacyclophanes and Drugs (III) -Complex Formation of Water-Soluble Polyparacyclophanes with Fluorescent Hydrophobic Naphthalene Derivatives in Aqueous Solution- (수용성 폴리파라시클로판류와 약물과의 상호작용(제 3보)-수용액 중 수용성 폴리파라시클로판류와 형광 소수 나프탈렌 유도체류와의 복합체 형성-)

  • Chun, In-Koo;Lee, Min-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.71-79
    • /
    • 1989
  • Complex formation of water-soluble polyparacyclophanes bearing two diphenylmethane or two diphenyl ether skeletons with l-anilinonaphthalene-8-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was investigated quantitatively to develop useful host compounds comparing with ${\alpha}\;-\;and\;{\beta}-cyc1odextrins$$({\alpha}-\;and\;{\beta}-CyDs$) in aqueous solution. Benesi-Hildebrand type analysis of the fluorescent intensity showed that the dissociation constants (Kd) of paracyclophane-ANS complexes were $1.55\;{\times}\;10^{-4}M$ for 1,6,20,25-tetraaza[6.1.6.1]paracyclophane(CPM 44) and $1.23\;{\times}\;10^{-4}M$ for 1,7,21,27-tetraaza[7.1.7.1]paracyclophane (CPM 55), and those of paracyclophane-TNS complexes were $6.99\;{\times}\;10^{-6}M$ for CPM 44 and $6.23\;{\times}\;10^{-5}M$ for CPM 55, in 1:1 molar ratio. On the other hand, the Kd values of 1,7,21,27-tetraaza-14,34-dioxa[7.1.7.1]paracyclophane (CPE 55)-ANS, 1,8,22,29-tetraaza-15,36-dioxa[8.1.8.1]paracyclophane (CPE 66)-ANS, CPE 55-TNS, CPE 66-TNS complexes were $1.75\;{\times}\;10^{-3}M$, $3.07\;{\times}\;10^{-3}M$, $3.75\;{\times}\;10^{-3}M$ and $2.15\;{\times}\;10^{-3}M$, respectively. On the contrary, the Kd values of ${\alpha}-CyD-ANS$, ${\beta}-CyD-ANS$, ${\alpha}-CyD-TNS$ and ${\beta}-CyD-TNS$ complexes were found to be $3.98\;{\times}\;10^{-2}M$, $1.05\;{\times}\;10^{-2}M$, $1.38\;{\times}\;10^{-2}M$ and $3.52\;{\times}\;10^{-4}M$, respectively. These results mean that the complexation of CPMs with ANS or TNS is by 5.6-1,975 fold stronger than that for ${\alpha}-or\;{\beta}-CyDs$, and the complex formation of CPEs with ANS or TNS is nearly same as or somewhat stronger than that for ${\alpha}-or\;{\beta}-CyDs$. From the Kd values determined at different temperatures, thermodynamic parameters were calculated and the complexation was found to be a spontaneous exothermic reaction. The effects of pH on Kd values of CPM 44-ANS, and CPM 55-ANS complexes were negligible in the range of pH 1.2-1.8. However, the Kd values of these complexes increased significantly with increasing ionic strength.

  • PDF

Metabolism of an Anionic Fluorescent Dye, 1-Anilino-8-naphthalene Sulfonate (ANS) by Rat Liver Microsomes

  • Chung, Youn-Bok;Bae, Woong-Tak;Han, Kun
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.677-682
    • /
    • 1998
  • The present study was designed to examine the metabolism of 1-anilino-8-naphthalene sulfonate (ANS), an anionic compound which is transported into liver via "multispecific organ ic anion transporter", with rat hepatic microsomes. TLC analysis indicated that the fluorescent metabolites were not produced to a measurable extent, which made it possible to assess the ANS metabolism by measuring the fluorescence disappearance. The metabolism of ANS was remarkably inhibited by the presence of SKF-525A as well as by the substitution of 02 by CO gas. ANS metabolism by microsomes also required NADPH as a cofactor. These results indicated that the microsomal monooxygenase system might be mainly responsible for the ANS metabolism. The maximum velocity ($V_{max}$) and Michaelis constant ($K_m$) were calculated to be $4.3{\pm}0.2$ nmol/min/mg protein and $42.1{\pm}2.0\;{\mu}M$, respectively. Assuming that 1g of liver contains 32mg of microsomal protein, the $V_{max}$ value was extrapolated to that per g of liver ($V_{max}^I$). The intrinsic metabolic clearance ($CL_{int}$) under linear conditions calculated from this in vitro metabolic study was 3.3ml/min/g liver, being comparable with that (3.0ml/min/g liver) calculated by analyzing the in vivo plasma disappearance curve in a previous study. Furthermore, the effects of other organic anions on the metabolism of ANS were examined. Bromophenolblue (BPB) and rose bengal (RB) competitively inhibited the metabolism of ANS, while BSP inhibited it only slightly. The inhibition constant ($K_i$) of BPB ($6\;{\mu}M$) was much smaller than that of RB ($200\;{\mu}M$). In conclusion, the microsomal monooxygenase system plays a major role in the metabolism of ANS, and other unmetabolizable organic anions (BPB and RB) compete for this metabolism.

  • PDF

Characterization of the Hepatic Uptake of l-Anilino-8-naphthalene sulfonate(ANS) by Isolated Rat Hepatocytes-Is Serum Protein Essential for Hepatic Uptake of ANS in the Liver?- (유리간세포를 사용한 ANS의 간내 이행에 관한 연구-ANS의 간내 이행과정에 단백질 매개 기구가 존재하는가?-)

  • Chung, Youn-Bok;Yuk, Dong-Yeon;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 1991
  • The hepatic uptake of an anionic fluorescence probe, l-anilino-8-naphthalene sulfonate (ANS) was characterized using isolated rat hepatocytes. The initial uptake rate of ANS by isolated hepatocytes was determined. The uptake process of ANS was fitted well to the Michaelis-Menten equation with a saturable component. The $V_{max}$ and $K_m$ values were $2.9{\pm}0.1\;nmol/min/mg$ protein and $29.1{\pm}3.2\;{\mu}M$, respectively. The uptake clearance $(CL_{up})$ based on the ratio of $V_{max}$ to $K_m$ was 11.7 ml/min/g liver, revealing the good coincidence with that assessed from the analysis of the plasma disappearance curve in previous report. Furthermore, the effect of serum protein on the hepatic uptake of ANS into isolated hepatocytes was investigated. The permeability clearances $(PS_{inf})$ of ANS uptake were much higher than those predicted based on the unbound fractions in the presence of serum. These suggested that the hepatic uptake of extensively serum protein-bound ANS is mediated not only by the unbound form of ligand but also by the serum protein-mediated uptake mechanism.

  • PDF

Drug-biomacromolecule interaction V

  • Kim, Chong-Kook;Ahn, Hae-Young;Han, Byung-Hoon;Hong, Soon-Keun
    • Archives of Pharmacal Research
    • /
    • v.6 no.1
    • /
    • pp.63-68
    • /
    • 1983
  • The binding properties of three ginsenosides, Rb$_{1}$, Rc and Re, to bovine and human serum albumins have been examined by fluorescence probe technique. 1-anilinonphathalene-8-sulfonate (ANS) was used as the fluorescence probe. Protopanaxatriol glycoside, Re, did not quench the fluorscence of ANS to the bovine serum albumin. Competitive bindings between protopanaxadiol glycosides, Rb$_{1}$ and Rc are both 3.3 . The binding constants for Rb$_{1}$ and Rc with bovine serum albumin were 1.91 * 10$_{4}$M$_{-1}$ AND 1.04 * 10$^{[-994]}$ M$^{-1}$ , respectively. The ginsenosides, Rb$_{1}$, Rc and Re did not quench the fluorescence of ANS bound to human serum albumin.

  • PDF

Interactions between Water-Soluble Polyparacyclophanes and Drugs (II) -Interaction between Water-Soluble Polyparacyclophanes and Fluorescent Hydrophobic Naphthalene Derivatives in Aqueous Solution- (수용성 폴리파라시클로판류와 약물과의 상호작용(제 2보) -수용액중 수용성 폴리파라시클로판류와 형광 소수 나프탈렌 유도체류와의 상호 작용-)

  • Chun, In-Koo;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.3
    • /
    • pp.113-123
    • /
    • 1988
  • A series of water-soluble polyparacyclophanes bearing two diphenylmethane or two diphenyl ether skeletons were investigated to develop useful host compounds by using 1-anilinonaphthalene-6-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) as fluorescent hydrophobic substrates in aqueous solution. It was noteworthy that remarkable fluorescent enhancements and blue shifts of ANS and TNS were observed only in the presence of 1,6,20,25-tetraaza[6.1.6.1] paracyclophane (CPM 44) and 1,6,21,27-tetraaza [7.1.7.1] paracyclophane (CPM 55) for diphenylmethane skeleton, and 1,7,21,27-tetraaza-14,34-dioxa [7.1.7.1] paracyclophane (CPE 55) and 1,8,22,29-tetraaza-15,36-dioxa [8.1.8.1] paracyclophane (CPE 66) for diphenyl ether skeleton, comparing with ${\alpha}-\;and\;{\beta}-cyclodextrins$. However, their acyclic analogues such as 4,4'-dimethylaminodiphenylmethane and 4,4'-dimethylaminodiphenyl ether, and paracyclophanes whose cavities were smaller showed only small effects under the same conditions. These facts suggested that hosts and substrates were in an intimate contact which would not occur without larger structures, and thus that guest molecules were strongly incorporated in the hydrophobic cavities of these larger paracyclophanes. The effects of pH on the fluorescent intensity of ANS-CPM 44, ANS-CPM 55, ANS-CPE 55, ANS-CPE 66, TNS-CPM 44, TNS-CPM 55, TNS-CPE 55 and TNS-CPE 66 systems were not significant below pH 2.0, but their fluorescent intensities were markedly reduced with increasing ionic strength.

  • PDF

Quantitative Estimation of Binding Site Polarities of Water-Soluble Polyparacyclophanes in Aqueous Solution by Spectrofluorometry (형광광도법에 의한 수용액중 수용성 폴리파라시클로판류의 결합부위의 극성 측정)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.3
    • /
    • pp.133-141
    • /
    • 1991
  • The fluorescence characteristics of l-anilinonaphthalene-8-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) made the dyes useful probes for the determination of the polarity at the binding sites of several water-soluble polyparacyclophanes. Polyparacyclophanes used were 1,6,20,25-tetraaza[ 6.1.6.1]paracyclophane (CPM 44), 1,7,21,27 -tetraaza[7.1.7.1]paracyclophane (CPM 55). 1,7,21,27 -tetraaza-14,34-dioxa[7.1.7.1]paracyclophane (CPE 55) and 1,8,22,29-tetraaza-15,36-dioxa[8.1.8.1] paracyclophane (CPE 66). The fluorescence quantum yield, emission maximum, and half bandwidth of ANS or TNS obtained in a variety of solvent systems were plotted as a function of four kinds of empirical solvent polarity scales such as dielectric constant (D), (D-l)/(2D+1). Y and Z values. It was found that the Z-value-emission maximum $(\overline}V_F,\;cm^{-1})$ profile showed the most reliable linearity. ANS and TNS interacted with CPM 44, CPM 55, CPE 55. CPE 66. ${\alpha}-cyclodextrin$ (CyD) and ${\beta}-CyD$ in the aqueous solution, and from the emission maxima the polarities (Z-value) of their binding sites were calculated to be 92.65, 87.50, 93.35, 84.52, 94.36, and 90.48 for ANS, respectively. and 91.07, 89.68, 85.44, 86.74 and 87.6 for TNS except for ${\alpha}-CyD$, respectively.

  • PDF

Interaction of ${\alpha}$-Ketoglutarate Dehydrogenase Complex with Allosteric Regulators Detected by a Fluorescence Probe, 1,1'-bi(4-aniline)naphthalene-5,5'-disulfonic acid, an Inhibitor of Catalytic Activity

  • Hong, Sung-Youl;Bak, Choong-Il;Ryu, Jae-Ha;Song, Byoung-J.;Huh, Jae-Wook
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.230-235
    • /
    • 1996
  • The interaction of ${\alpha}-ketoglutarate$ dehydrogenase complex (${\alpha}-KGDC$) with a hydrophobic fluorescent probe [1,1'-bi(4-aniline)naphthalene-5,5'-disulfonic acid] (bis-ANS) was studied. The punfied ${\alpha}-KGDC$ was potently inhibited by bis-ANS with an apparent half maximal inhibitory concentration ($IC_{50}$) of 9.8 ${\mu}m$ at pH 8.0. The catalytic activities of both the E1o and E2o subunits were predominantly inhibited while that of the E3 component was hardly affected. The binding of bis-ANS to the enzyme caused a marked enhancement and blue shift from 523 nm to 482 nm in the fluorescence emission spectrum. The dissociation constant ($K_d$) and the number of binding sites (n) were calculated to be 0.87 mM and 158, respectively. Allosteric regulators such as purine nucleotides and divalent cations further increased the fluorescence intensity of the $bis-ANS-{\alpha}-KGDC$ binary complex. These data suggest that the binding of these allosteric regulators to ${\alpha}-KGDC$ may cause the conformational changes in the enzyme and that bis-ANS could be used as a valuable probe to study the interaction of the multi-enzyme complex and its allosteric regulators.

  • PDF