• Title/Summary/Keyword: 1,4-dipole formation

Search Result 10, Processing Time 0.021 seconds

The Mechanism in the Photolysis of 5-Phenyl-tetrazole Derivatives (5-Phenyl-tetrazole의 光分解反應과 그 메카니즘에 관한 硏究)

  • Chae, Young-Bok;Chang, Kyung-Soo;Kim, Sung-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.85-88
    • /
    • 1967
  • The main object of this experiment is to provide a systematic approach to the reaction mechanism in the photolysis of 5-phenyl-1,2,3,4-tetrazole during which the formation of C-phenyl-nitrile-imine of 1.3-dipole was expected. So the occurrence of 1,3-dipole-addition was examined but not observed despite the formation of nitrile-imine. 3,6-diphenyl-1,2,4,5-tetrazine (IV); 3,6-diphenyl-1,4-dihydro-1,2,4,5-tetrazine (III); 3,5-diphenyl-1,2,4-triazole; 4-amino-3,5-diphenyl-1,2,4-triazole; benzonitrile; ammonia and nitrogen were isolated as final products of this reaction.

  • PDF

Dipole-Forming Photochemical Group Transfer Reactions of Phthalimides and ${\alpha}-Ketoamides$

  • Yoon, Ung-Chan;Mariano Patrick S.
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.155-162
    • /
    • 2005
  • Results of studies of SET-promoted dipole-forming photochemical group transfer reactions of phthalimide and ${\alpha}-ketoamide$ derivatives are discussed. Azomethine ylide forming photochemical reactions, which are initiated by intramolecular SET from tethered silylmethyl-, carboxymethyl-, and ${\beta}-hydroxyethyl$ containing electron donors to excited states of phthalimides, related maleimides, and conjugated imides, are presented first. Following this, investigations of regioselective 1,4-dipole forming photochemical reactions of N-trialkylsilylmethyl- and N-trialkylstannyl-${\alpha}$-ketoamides are described.

  • PDF

Regular Distribution of -OH Fragments on a Si (001)-c(4×2) Surface by Dissociation of Water Molecules (물 분자의 해리에 의한 Si (001)-c(4×2) 표면에서의 수산화기의 균일한 분포)

  • Lee, Soo-Kyung;Oh, Hyun-Chul;Kim, Dae-Hee;Jeong, Yong-Chan;Baek, Seung-Bin;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.457-462
    • /
    • 2010
  • Adsorption of a water molecule on a Si (001) surface and its dissociation were studied using density functional theory to study the distribution of -OH fragments on the Si surface. The Si (001) surface was composed of Si dimers, which buckle in a zigzag pattern below the order-disorder transition temperature to reduce the surface energy. When a water molecule approached the Si surface, the O atom of the water molecule favored the down-buckled Si atom, and the H atom of the water molecule favored the up-buckled Si atom. This is explained by the attractions between the negatively charged O of the water and the positively charged down-buckled Si atom and between the positively charged H of the water and the negatively charged up-buckled Si atom. Following the adsorption of the first water molecule on the surface, a second water molecule adsorbed on either the inter-dimer or intra-dimer site of the Si dimer. The dipole-dipole interaction of the two adsorbed water molecules led to the formation of the water dimer, and the dissociation of the water molecules occurred easily below the order-disorder transition temperature. Therefore, the 1/2 monolayer of -OH on the water-terminated Si (001) surface shows a regular distribution. The results shed light on the atomic layer deposition process of alternate gate dielectric materials, such as $HfO_2$.

Voltammetric Studies of Diazocalix[4]crown-6 for Metal Ion Sensing

  • Dong, Yun-Yan;Kim, Tae-Hyun;Lee, Chang-Seuk;Kim, Hyun-Jung;Lee, Jae-Hong;Lee, Joung-Hae;Kim, Ha-Suck;Kim, Jong-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3549-3552
    • /
    • 2010
  • The complex formation between diazocalix[4]dipropyl (1) and diazocalix[4]crown-6 ether (2) with alkali, alkaline earth and transition metal ions was investigated by voltammetry. Electrochemical properties of compounds 1 and 2 and their selectivity toward metal ions were evaluated in $CH_3CN$ solution by comparison of voltammetric behaviors of two phenols in each compound. Compounds 1 and 2 showed almost same voltammetric behavior which is two irreversible oxidation peaks caused by intramolecular hydrogen bonding between two phenols in 1 and 2. While, however, upon interacting with various metal ions, 1 with two propyl ether groups showed no significant changes in voltammetry, 2 with crown ether group caused significant voltammetric changes upon the addition of $Ba^{2+}$ to 2. Their behavior is closely related to the complex formation by entrapment of metal ion into crown ether cavity, and ion-dipole interaction between metal ion and two phenolic groups in calix[4]crown-6.

The Thermodynamics of the Formation of Pyridines-Iodine Charge Transfer Complexes (피리딘류와 요오드사이의 전하이동착물생성에 관한 열역학적 연구)

  • Oh Cheun Kwun;Jin Burm Kyong;Myong Kyun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.228-235
    • /
    • 1981
  • Ultraviolet spectrophotometric investigation were carried out on the systems of pyridine, ${\beta}$-picoline and 3,5-lutidine with iodine in carbon tetrachloride. The results reveal the formation of one to one molecular complexes of the type, $C_5H_5N{\cdot}I_2$, ${\beta}-C_5H_4(CH_3)N{\cdot}I_2$ and 3,5-$C_5H_3(CH_3)_2N{\cdot}I_2$. The equrilibrium constants of complexes were obtained in consideration of that absorption maxima have the blue shift with the increasing temperatures according to the formation of the charge transfer complexes. The thermodynamic parameters, ${\Delta}H$, ${\Delta}G$ and ${\Delta}S$ for the formation of the charge transfer complexes were calculated from these values. These results indicated that the relative stabilities of the pyridine, ${\beta}$-picoline and 3,5-lutidine complexes with iodine increase in the order, pyridine < ${\beta}$-picoline < 3,5-lutidine. These results were supposed to be the influence resulted from increase of electron density by the positive inductive effect and the dipole moment of the steric hindrance effect. And this results were compared and discussed with polymethylbenzene-iodine CT-complexes.

  • PDF

A Study of the Ionic Association of the Substituted N-Methyl Pyridinium Iodide (II), 4,N-Dimethyl Pyridinium Iodide in Ethanol-Water Mixture

  • Kwun, Oh-Cheun;Jee, Jong-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.37-40
    • /
    • 1985
  • The electrical conductance and UV absorbance of 4,N-dimethyl Pridinium Iodide (NDMPI) were measured in the ethanol volume percentage, 95, 90, 80 and 60 of an ethanol-water mixture at 15, 25, 35 and $45^{\circ}C$. Ionic association constants(K) of NDMPI were evaluated in accordance with a combined method of conductance UV absorbance. The ion size parameter (${\gamma}_{\pm}$) and dipole momemt (${\mu}_{A+D-}$) of NDMPI were obtained from the values of K and dielectric constant. The ${\mu}_{A+D-}$- values were in good agreement with the values of transition moment(${\mu}_{mn}$) which is calculated form the UV peak values. The large negative values of the electrical enthalpy (${\Delta}H_{el}^{\circ}$) and entropy (${\Delta}H_{el}^{\circ}$ ) have proved that NDMPI had a positive hydration. The positive values of entropy (${\Delta}S^{\circ}$) means the formation of NDMPI ion goes with dehydration.

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Performance enhancement of Organic Thin Film Transistor using $C_{60}$ hole injection layer ($C_{60}$(buckminsterfullurene) 홀주입층을 적용한 유기박막트랜지스터의 성능향상)

  • Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.19-25
    • /
    • 2008
  • In this study, we fabricated Organic Thin Film Transistors(OTFTs) with $C_{60}$ hole injection layer between organic semiconductor(pentacene) and metal electrode, and we compared the electrical characteristics of OTFTs with/without $C_{60}$. When the $C_{60}$ hole injection layer was introduced, the mobility and the threshold voltage were improved from 0.298 $cm^2/V{\cdot}s$ and -13.3V to 0.452 $cm^2/V{\cdot}s$ and -10.8V, and the contact resistance was also reduced. When the $C_{60}$ is inserted, the hole injection was enhanced because the $C_{60}$ prevent the unwanted chemical reaction between pentacene and Au. Furthermore, we fabricated the OTFTs using Al as their electrodes. When the OTFTs were made by only aluminum electrode, the channel were not mostly made because of the high hole injection barrier between pentacene and aluminum, but when the $C_{60}$ layer with an optimal thickness was applied between aluminum and pentacene, the device performances were obviously enhanced because of the vacuum energy level shift of Al and the consequent decrease of the hole injection barrier which was induced by the interface dipole formation between $C_{60}$ and Al. The mobility and $I_{ON}/I_{OFF}$ current ratio of OTFT with $C_{60}/Al$ electrode were 0.165 $cm^2/V{\cdot}s$ and $1.4{\times}10^4$ which were comparable with the normal Au electrode OTFT.

Ethylenediamine Complex for Stabilization of Omeprazole (오메프라졸의 안정화를 위한 에칠렌디아민 복합체 개발)

  • Oh, Sea-Jong;Kim, Eun-Young;Kim, Kil-Soo;Kim, Yuon-Jeung;Lee, Gye-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 1995
  • To stabilize omeprazole(OMP), ethylenediamine(ED) complex of omeprazole(OMPED) was prepared by reaction between OMP and ED in methanol, and the complex formation was confirmed by the instrumental analysis, i.e., IR, DSC, EA, NMR, MS and XRD. The rates of decomposition of OMP and OMPED in aqueous solution and the shelf lives at standard temperature were measured by accelerated stability analysis. The results are summarized as follows; The mole ratio of OMP and ED in OMPED complex is 1:1, the energy of formation within OMPED might be combined between polar imidazole group of OMP with induced a dipole amine group in the readily polarizable ED molecule. At standard temperature the degradation rate constant of OMP in aqueous solution is $2.540{\times}10^{-2}\;hr^{-1}$ and the shelf life is 4.15 hrs, and in the case of OMPED the degradation rate constant is $7.986{\times}10^{-4}\;hr^{-1}$ and the shelf life is 131.96 hrs. So, the OMPED has about 31 times longer shelf life than OMP. The activation energy of OMP and OMPED are 5.23 and 18.55 kcal $mole^{-1}$ respectively. The stability of OMP is dependent chiefly on pH in the solutions and it decomposes readily in acidic medium by hydrogen ion catalized reaction but becomes stable beyond pH 9.0. In case of the ED-complex, OMPED is stable in neutral as well as in dilute acidic solutions even in pH 6, OMPED is very stable to light(UV), that is, the rate constant and shelf life of OMP are $k=1.0188{\times}10^{-2}\;day^{-1}$, $T_{90%}=4.5 \;days$, on the other hand, the those of OMPED are $k=7.138{\times}10^{-4}\;day^{-1}$, $T_{90%}=64.1\;days$, respectively. From the above results, it is thought that new dosage forms could be developed by using the OMPED as a potential OMP complex.

  • PDF

Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism

  • Kim, Chae-Won;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2955-2959
    • /
    • 2011
  • Second-order rate constants for nucleophilic substitution reactions of 2,4-dinitrophenyl benzenesulfonate 1a with a series of alicyclic secondary amines in MeCN have been measured spectrophotometrically and compared with those reported previously for the corresponding reactions performed in aqueous medium to investigate the effect of medium on reactivity and reaction mechanism. The amines employed in this study are found to be more reactive in the aprotic solvent than in $H_2O$. The reactions of 1a in MeCN result in a linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.58, which contrasts to the curved Br${\o}$nsted-type plot reported previously for the corresponding reactions performed in the aqueous medium (i.e., ${\beta}_2$ = 0.86 and ${\beta}_1$ = 0.38). Accordingly, it has been concluded that the reaction mechanism changes from a stepwise mechanism to a concerted pathway upon changing the medium from $H_2O$ to MeCN. Reactions of Y-substituted phenyl benzenesulfonates 1a-c with piperidine in MeCN result in a linear Br${\o}$nsted-type plot with ${\beta}_{lg}$ = -1.31, indicating that expulsion of the leaving group is significantly more advanced than bond formation in the transition state. The trigonal bipyramidal intermediate ($TBPy^{\pm}$) proposed previously for the reactions in $H_2O$ would be highly unstable in MeCN due to strong repulsion between the negative charge in $TBPy^{\pm}$ and the negative dipole end of MeCN. Thus, destabilization of $TBPy^{\pm}$ in MeCN has been concluded to change the reaction mechanism from a stepwise mechanism to a concerted pathway.