• Title/Summary/Keyword: 1,3-dichloropropene

Search Result 11, Processing Time 0.023 seconds

Isomeric Effects on Volatilization of 1,3-Dichloropropene Fumigant in Soil

  • Kim, Jung-Ho;Mallavarapu, Megharaj
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1325-1330
    • /
    • 2009
  • The fumigant 1,3-dichloropropene (1,3-D) was recently proposed as a direct replacement for methyl bromide ($CH_3Br$) in soil fumigation. This study was conducted to better understand behavior phase partitioning, diffusion and volatilization of 1,3-D as affected by isomer. The Henry's law constant(KH) of cis-1,3-D and trans-1,3-D was 0.058 and 0.037 at $20^{\circ}C$, respectively. $K_H$ of cis form of 1,3-D was higher than that of trans form of 1,3-D. To compare with volatilization of 1,3-D isomer, soil column [70 cm (length)${\times}$12 cm (i.d.)] included a shank injection at 30 cm with 300 kg $ha^{-1}$. Maximum cis-1,3-D and trans-1,3-D concentration reached 57 mg $L^{-1}$ and 39 mg $L^{-1}$ at 30 cm depth at 1h after application. Cumulatively, after 10 days, 51.8% and 43.57% of applied cis-1,3-D and trans-1,3-D was emitted via volatilization, respectively. The total losses of cis-1,3-D were significantly greater than that of trans-1,3-D. Finally, cis-1,3-D and trans-1,3-D, such as isomer are dominant of 1,3-D fates in soil.

Multi Analysis of Fumigants in Soil and Water (물과 토양에서 훈증제의 동시분석법 확립)

  • Kim, Jung-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.4 s.55
    • /
    • pp.365-373
    • /
    • 2006
  • Emission of methyl bromide (MeBr) from soil was implicated in stratospheric ozone depletion. To determine multi analysis of alternatives fumigants for MeBr, this paper describes the methods of analysis in water and soil. The MeBr, methyl iodide (Mel), propargyl bromide (PBr), cis 1,3-dichloropropene (cis 1,3-D), trans 1,3-dichloropropene (trans 1,3-D) and chloropicrin(CP) are separated on the base line on GC-ECD at three column of AT+DB+DB (90m) with temperature programing of $35^{\circ}C{\rightarrow}110^{\circ}C$ on GC-ECD. The relative retention time for MeBr, Mel, PBr, cis 1,3-D, trans 1,3-D and CP is 1.0, 1.4, 2.3, 3.2, 3.6 and 3.7, respertively. The detection limit for MeBr, Mel, PBr, cis 1,3-D, trans 1,3-D and CP is 469 pg, 5 pg, 21 pg, 79 pg, 101 PE and 5pg, respectively. Recovery of MeBr Mel, PBr, cis 1,3-D, trans 1,3-D and CP in water added 150 ppm fumigants were 81%, 96%, 95%, 97%, 98% and 99%, respectively. Recovery of MeBr, MeI, PBr, cis 1, 3-D, trans 1,3-D and CP in soil added 150ppm fumigants were 56%, 84%), 85%, 81%, 87% and 88%, respectively.

Transformation for 1,3-Dichloropene of Soil Fumigant in Water and Soil (토양 훈증제 1,3-Dichloropene의 물 및 토양 중 분해)

  • Kim, Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1463-1468
    • /
    • 2007
  • Emission of methyl bromide(MeBr) of soil fumigant was implicated in stratospheric ozone depletion. To determine the environmental fate for 1,3-dichloropene(1,3-D) of alternatives fumigants for MeBr, this paper researched the transformation for 1,3-D in water and soil. Half lives of cis-1,3-D in water with first-order kinetics are 9.9day and 1.7day at $25^{\circ}C\;and\;40^{\circ}C$, half lives of trans-1,3-D are 8.6day and 1.5day at $25^{\circ}C\;and\;40^{\circ}C$, respectively. Transformation for 1,3-D in water at high temperature faster then at low temperature. Hydrolysis for 1,3-D in water are unaffected at $pH\;2.5{\sim}pH\;10.0$, but hydrolysis for 1,3-D at pH 11.5 higher then at $pH\;2.5{\sim}pH\;10.0$. Half lives of cis-1,3-D in soil are 11.5day and 7.7day at 3% and 10% of soil moisture, half lives of trans-1,3-D are 9.9day and 6.9day at 3% and 10% of soil moisture, respectively. Transformation for 1,3-D in water increased with increasing soil moisture. Transformation for trans-1,3-D isomer are more rapid then cis-1,3-D isomer in water and soil. This research has identified that transformation for 1,3-dichloropropene are affected by temperature, pH, soil moisture, and isomer of cis and trans in water and soil.

Influence of a Variety of Second Carbon Substrates on the Bacterial Consortium Differentially Degrading Cis- and Trans-1,3-Dichloropropene (1,3-D) (상업용 훈증제인 Cis-와 Trans-1,3-Dichloropropene(1,3-D)을 차별적으로 분해하는 Bacterial Consortium에 영향을 주는 다양한 이차 탄소원들의 효과)

  • Chung, Keun-Yook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1243-1252
    • /
    • 2000
  • The differential enhanced degradation of cis- and trans-1,3-D was observed in the previous two studies performed by several researchers. This study was initiated to investigate the involvement of microorganisms in the differential enhanced degradation of the chemicals. As expected, microorganisms were responsible for the enhanced degradation. A mixed bacterial culture capable of degrading 1,3-D was isolated from an enhanced soil sample collected from a site treated with 1,3-D. Similar to the enhanced soil, the mixed culture degraded trans-1,3-D faster than cis-1,3-D. This mixed culture could not utilize cis- and trans-1,3-D as a sole source of carbon for growth. Rather, a variety of second substrates were evaluated to stimulate the differential enhanced degradation of the two isomers. As a result, the mixed culture degraded cis- and trans-1,3-D only in the presence of a suitable second substrate. Therefore, it appeared that the degradation of cis- and trans-1,3-D was a cometabolic process. Second substrates that had the capacity to stimulate the degradation included soil leachate, tryptone, tryptophan, and alanine. Other substrates tested. including soil extract. glucose, yeast extract and indole, failed to stimulate the degradation of the two isomers. The mixed culture was composed of four morphologically distinctive colonies on L-agar plates.

  • PDF

Degradation of Trichloroethylene in Aqueous Phase by Electrochemical Ferrate(VI) (전기화학적 합성 Ferrate(VI)를 이용한 수중 Trichloroethylene 분해특성 연구)

  • Nam, Ju-Hee;Kwon, Byung-Hyuk;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.453-461
    • /
    • 2012
  • The degradation characteristics of TCE by Ferrate(VI) oxidation have been studied. Ferrate(VI) were prepared by electrochemical method. The degradation efficiency of TCE in aqueous solution was investigated at various pH values, Ferrate(VI) doses and aqueous solution temperature values. GC-ECD was used to analyze TCE. TCE was degraded rapidly by ferrate(VI) in aqueous solution, Also, the experimental results showed that TCE removal efficiency increased with the increase of Ferrate(VI) doses. The effect of pH was investigated and the maximum degradation efficiency was obtained at pH 7. And intermediate products were identified by GC-MS techniques. Ethyl Chloride, Dichloroethylene, Chloroform, 1,1-dichloropropene, Trichloroacetic acid and Trichloroethane were identified as a reaction intermediate, and $Cl^-$ was identified as an end product.