• Title/Summary/Keyword: 1,2-Difluoroethane

Search Result 4, Processing Time 0.017 seconds

1,1-Difluoroethane Synthesis from Acetylene over Fluorinated γ-Al2O3 (불화된 γ-Al2O3상에서 아세틸렌으로부터 1,1-difluoroethane의 합성)

  • Lee, Youn-Woo;Lee, Kyong-Hwan;Lim, Jong Sung;Kim, Jae-Duck;Lee, Youn Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.629-633
    • /
    • 1998
  • The synthesis of 1,1-difluoroethane from acetylene as a function of HF/acetylene ratio, contact time and reaction temperature was studied on a fluorinated ${\gamma}-Al_2O_3$. The fluorination of ${\gamma}-Al_2O_3$ was treated with pure HF gas at high temperature. The crystallinity, the porosity, and the acid properties of the prepared samples were examined using XRD, the nitrogen adsorption, pyridine-IR and ammonia-TPD respectively. The activity was enhanced by further fluorination of alumina. The fraction of 1,1-difluoroethane was obtained above 90% at reaction temperature of about $200^{\circ}C$. The ratio of 1,1-difluoroethane to vinylfluoride over fluorinated ${\gamma}-Al_2O_3$ catalyst was increased with the mole ratio of HF/acetylene and contact time, and was found to be the highest ratio at reaction temperature of $200^{\circ}C$.

  • PDF

Effects of Intramolecular Basis Set Superpositon Error on Conformational Energy Difference of 1,2-Difluoroethane and 1.2-Dimethoxyethane

  • Han, Young-Kyu;Kim, Kyoung-Hoon;Son, Sang-Kil;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1267-1271
    • /
    • 2002
  • The conformation dependences of basis set superposition errors (BSSE) for 1,2-difluoroethane (DFE) and 1,2-dimethoxyethane (DME) molecules have been estimated using counterpoise method at the Moller-Plesset second order perturbation (MP2) level of theory with various basis sets, assuming that all BSSE dependences on conformations are due to the change in CC bond. The BSSE on the energy differences between eclipsed and gauche forms of DFE are in the range of 0.2-1.2 kcal/mol and those between local minima, gauche and anti forms, are less than 0.2 kcal/mol. For the larger DME molecule, the BSSE differences between local minima are still less than 0.4 kcal/mol, but may not be ignored compared to the energy differences of 0.2-3.0 kcal/mol between conformers.

Dechlorination of HCFC-142b over Supported Pd Catalysts and Solid Acid Catalysts (Pd담지촉매와 고체산촉매를 이용한 HCFC-142b의 탈염소반응)

  • Han, K.Y.;Seo, K.W.;Mok, Y.I.;Park, K.Y.;Ahn, B.S.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.372-376
    • /
    • 1998
  • Supported Pd($Pd/AlF_3$, $Pd/{\gamma}-Al_2O_3$) catalysts and solid-acid catalysts(${\gamma}-Al_2O_3$, ${\alpha}-Al_2O_3$, $AlF_3$) were used to perform dechlorination of HCFC-142b(1-chloro-1,1-difluoroethane) in the presence of excess hydrogen. In the reactions the effects of reaction temperature, the mole ratio(r) of $H_2$ to HCFC-142b and the amount of supported Pd on dechlorination of HCFC-142b into HFC-143a(1,1,1-trifluoroethane) or HFC-152a(1,1-difluoroethane) were investigated. The experimental results showed that the conversion of HCFC-142b to product gases were 60% and 92%, respectively, and the selectivity to HFC-143a in the product gases were 58% and 64% for $Pd/AlF_3$ and $Pd/{\gamma}-Al_2O_3$ catalysts, respectively. On these catalysts an optimum reaction condition was found at $200^{\circ}C$ with the space time of reactant gases as 1.05 second and the mole ratio of $H_2$ to HCFC-142b as 3. Solid-acid catalysts were also tested at the same reaction condition. The results showed that the conversions of HCFC-142b to product gases were 12%, 8% and 7%, and the selectivities to HFC-152a were 94%, 92% and 90% for ${\gamma}-Al_2O_3$, ${\alpha}-Al_2O_3$ and $AlF_3$ catalysts, respectively.

  • PDF

Phase Behavior of Poly(methylmethacrylate) (PMMA) in Varions Solvents at High Pressure (고압상태의 다양한 용매 내에서 Poly(methylmethacrylate) (PMMA)의 상거동)

  • Kim, Je-Il;Yoo, Ki-Pung;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.28-33
    • /
    • 2007
  • We measured cloud points of Poly(methylmethacrylate) (PMMA) in various solvents using the high-pressure variable volume view cell apparatus. The solvents used for dissolving PMMA were chlorodifluoromethane (HCFC-22), dimethylether (DME), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a), and the effect of $CO_2$ concentration on the phase behavior of $PMMA+HCFC-22+CO_2$ system and $PMMA+DME+CO_2$ system was observed. PMMA was dissolved well in HCFC-22 from about 340 K, 5MPa and in DME from about 300 K, 28MPa. However, PMMA was not dissolved at all up to 423.15 K, 160MPa in the other fluorine compound such as HFC-l43a, HFC-152a and HFC-134a. PMMA+HCFC-22, $PMMA+HCFC-22+CO_2$ and PMMA+DME systems exhibit the lower critical solution temperature (LCST) behavior, however, $PMMA+DME+CO_2$ system exhibits the upper critical solution temperature (UCST) behavior. In the $CO_2$ mixture, the cloud point pressure of PMMA was increased dramatically proportional to the amount of $CO_2$ added, and from this result, it was known that $CO_2$ could be used as an antisolvent for fabricating PMMA nano-particles. And the cloud point of PMMA could be controlled by changing the concentration of $CO_2$.

  • PDF