• Title/Summary/Keyword: 1,2-Benzisothiazoles

Search Result 2, Processing Time 0.018 seconds

PHOTOCHEMICAL REACTIONS OF PSEUDOSACCHARIN 3-ALLYL ETHER (PROBENAZOLE) AND ITS ALKYL ETHER

  • Yoon, Ung-Chan
    • Journal of Photoscience
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 1995
  • Photoreactions of pseudosaccharin ethers have been investigated. Pseudosaccharin 3-allyl ether undergoes a facile photoreaction via reaction pathways involving homolysis of bond between pseudosaccharyl oxygen and 3-allyl carbon, and excited nucleophilic substitution of allyloxy group by solvent which are not quenched by oxygen present in the reaction. Product yield demonstrates that the homolysis pathway predominates over the nucleophilic substitution in ca. 7:1 ratio. In contrast, pseudosaccharin alkyl ethers follow different reaction routes to produce two products, solvent-substituted pseudosaccharin alkyl ethers and reduction products, 3-alkoxy-1, 2-benzisothiazoles. The formations of reduction products, 3-alkoxy-1, 2-benzisothiazoles are completely quenched by oxygen.

  • PDF

Benzisothiazoles and $\beta$-Adrenoceptors: Synthesis and Pharmacological lnvestigation of Novel Propanolamine and Oxypro-panolamine Derivatives in Isolated Rat Tissues

  • Morini Giovanni;Poli Enzo;Comini Mara;Menozzi Alessandro;Pozzoli Cristina
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1317-1323
    • /
    • 2005
  • In an attempt to examine the ability of benzisothiazole-based drugs to interact with $\beta$-adrenoceptors, a series of 1,2-benzisothiazole derivatives, which were substituted with various propanolamine or oxypropanolamine side chains in the 2 or 3 position, were synthesised and tested. The pharmacological activity of these compounds at the ,$\beta$-adrenoceptors was examined using isolated rat atria and small intestinal segments, which preferentially express the $\beta_{1}$- and $\beta_{3}$-adrenoceptor-mediated responses, respectively. None of these products showed any $\beta$-adrenoceptor agonistic activity. In contrast, the 2- and 3-substituted isopropyl, tert-butyl, benzyl, and piperonyl derivatives 2a-d and 3a-d elicited surmountable inhibition of the isoprena­line-induced chronotropic effects in the atria, suggesting competitive antagonism at the $\beta_{1}$­recognition site. The $pA_{2}$ values revealed tert-butyl 3b and the isopropyl substituted piperonyl derivatives 3a to be the most effective. Remarkably, many of the 2-substituted propanolamines were less active than the corresponding 3-substituted oxypropanolamines. With the exception of compound 3b, none of these drugs antagonised the muscle relaxant activity of isoprenaline in the intestine, suggesting no effect on the $\beta_{3}$-adrenoceptors. These results confirm the ability of the benzisothiazole ring to interact with the $\beta$-adrenoceptors, and demonstrate that 2-substitution with propanolamine or 3-substitution with oxypropanolamine groups yields compounds with preferential antagonistic activity at the cardiac $\beta_{1}$adrenoceptors. The degree of antagonism depends strongly on both the nature of the substituent and its position on the benzisothiazole ring.