• Title/Summary/Keyword: 1,2,3-trichloropropane

Search Result 2, Processing Time 0.021 seconds

Regulation of ER Stress Response on 1,2,3-Trichloropropane-Induced Hepatotoxicity of Sprague Dawley Rats (1,2,3-Trichloropropane으로 유도된 SD랫드의 간독성에서 ER 스트레스 반응의 조절)

  • Tae Ryeol Kim;You Jeong Jin;Ji Eun Kim;Hee Jin Song;Yu Jeong Roh;Ayun Seol;Eun Seo Park;Ki Ho Park;Su Jeong Lim;Su Ha Wang;Yong Lim;Dae Youn Hwang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 2024
  • Endoplasmic reticulum (ER) stress responses are markedly induced during toxic responses caused by various chemical substances, including difenoconazole, but no research has been conducted on 1,2,3-trichloropropane (TCP), a chemical that is generally used in agriculture and industry, which induces hepatotoxicity. Therefore, in this study, the changes in indicators for hepatotoxicity, apoptosis, and ER stress were analyzed in TCP-treated Sprague Dawley (SD) rats to study the regulatory mechanism of ER stress during the hepatotoxicity. The TCP-treated group decreased in body weight and dietary intake compared to the vehicle-treated group, and necrosis and vacuolation increased significantly in liver histology. In addition, the expression of apoptosis-related factors, including Bax/Bcl-2 and cleaved caspase (Cas)-3/Cas-3 increased significantly in the TCP-treated group compared to the vehicle-treated group. In the analysis of ER stress response indicators, the expression of C/EBP homologous protein (CHOP), phospho-eukaryotic translation initiation factor 2 alpha subunit (eIF2α), and phospho-inositol-requiring enzyme 1α (IRE1α) increased only in the TCP100-treated group and decreased in the TCP200-treated group. However, the transcriptions of growth arrest and DNA damage-34 (GADD34) increased in the TCP200-treated group, while Spliced X-box binding protein-1 (XBP1s) and unspliced XBP1(XBP1u) decreased in the same group. These results suggest that the ER stress response is successfully triggered during the hepatotoxicity induced by TCP treatment through the alternative regulation of the unfolded-protein response (UPR) pathway.

Photochemical Reaction of Dichloromethane in Aqueous Solution

  • 박형련;정영태;김명선;우희권;함희숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.287-291
    • /
    • 1997
  • The photochemical reaction of aqueous dichloromethane in the absence (saturated with argon) and the presence of O2 (saturated with air or oxygen) has been investigated using 184.9 nm UV light. The irradiation of the solution causes the formation of 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane and chloride ion. The initial quantum yield of the products in the absence of oxygen was determined to be 8.6 × 10-3, 7.3 × 10-3, 4.4 × 10-3 and 2.3 × 10-2, respectively. In addition to these main products, small amounts of 1,2,3-trichloropropane, 1,1,2,2,3-pentachloropropane, 1,1,2,3,3-pentachloropropane, 1,3-dichloropropane and 1,1,2,2,3,3-hexachloropropane were detected. In the presence of oxygen, hydrogen peroxide was also detected along with the products listed above. With increasing the concentration of oxygen, while formation of the chlorinated organic products diminished, formation of chloride ion increased. Probable reaction mechanisms for the photochemical reaction were presented on the basis of products analysis.