• Title/Summary/Keyword: 0.35um

Search Result 334, Processing Time 0.021 seconds

Implementation of IC Card Interface Chipset with AES Cryptography (AES 암호화 모듈을 내장한 IC카드 인터페이스 칩? 개발)

  • 김동순;이성철
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.9
    • /
    • pp.494-503
    • /
    • 2003
  • In this paper, we propose the implementation techniques of IC card chipset that is compatible with international standard ISO-7816 and supports WindowsCE operating system to expropriate various electronic cash and credit card. This IC card interface chip set is composed with 32 bit ARM720T Core and AES(Advanced Encryption System) cryptography module for electronic commerce. Six IC card interfaces support T=0, T=1 protocol and two of them are used to interface with user card directly, the others are used for interface with SAM card. In addition, It supports a LCD controller and USB interface for host. We improved the performance about 70% than software based It card chip set and verified using Hynix 0.35um process.

A Design of LLC Resonant Controller IC in 0.35 um 2P3M BCD Process (0.35 um 2P3M BCD 공정을 이용한 LLC 공진 제어 IC 설계)

  • Cho, Hoo-Hyun;Hong, Seong-Wha;Han, Dae-Hoon;Cheon, Jeong-In;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.71-79
    • /
    • 2010
  • This paper presents a design of a LLC resonant controller IC. LLC resonant controller IC controls the voltage of the 2nd side by adjusting frequency the input frequency of the external resonant circuit. The clock generator is integrated to provide the pulse to the resonant circuit and its frequency is controlled by the external resistor. Also, the frequency of the VCO is adjusted by the feedback voltage. The protection circuits such as UVLO(Under Voltage Lock Out), brown out, fault detector are implemented for the reliable and stable operation. The HVG, and LVG drivers can provide the high current and voltage to the IGBT. The designed LLC resonant controller IC is fabricated with the 0.35 um 2P3M BCD process. The overall die size is $1400um{\times}1450um$, and supply voltage is 5V, 15V.

Implementation of CMOS 4.5 Gb/s interface circuit for High Speed Communication (고속 통신용 CMOS 4.5 Gb/s 인터페이스 회로 구현)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.128-133
    • /
    • 2006
  • This paper describes a high speed interface circuit using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit that serial binary data are received and converted into parallel redundant multi-valued data, and decoding circuit that converts redundant multi-valued data to parallel binary data. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, the proposed 1:4 DEMUX (demultiplexer, serial-parallel converter), was designed using a 0.35um standard CMOS technology. Proposed DEMUX is achieved an operating speed of 4.5Gb/s with a supply voltage of 3.3V and with power consumption of 53mW. The operating speed of this circuit is limited by the maximum frequency which the 0.35um process has. Therefore, this circuit is to achieve CMOS communication ICs with an operating speed greater than 10Gb/s in submicron process of high operating frequency.

  • PDF

Design of OTA Circuit for Current-mode FIR Filter (Current-mode FIR Filter 동작을 위한 OTA 회로 설계)

  • Yeo, Sung-Dae;Cho, Tae-Il;Shin, Young-Chul;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.659-664
    • /
    • 2016
  • In this paper, we suggest operational trans-conductance amplifier(OTA) for current-mode FIR filter that can be used in a digital circuit system requiring high operating frequency and low power consumption. The current-mode signal processing is one of the very innovative design method for a low power consumption system with high operating frequency because it shows a constant power regardless of frequency. From the simulation result using 0.35um CMOS process, when Vdd is 2V, it is confirmed that the proposed circuit showed the dynamic range of the about 1V, about 50% of supply voltage and output current swing of about 0~200uA. Also, the power consumption was evaluated with about 21uW and the active size for an integration was measured with $71um{\times}166um$.

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

Design of Current-to-Voltage Converter for the Current-mode FFT LSI in 0.35um processing (0.35um 공정에서 OFDM 용 전류모드 FFT LSI를 위한 I-V Converter 설계)

  • Bae, Seong-Ho;Hong, Sun-Yang;Jeon, Seong-Yong;Kim, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.469-472
    • /
    • 2007
  • 최근 많은 광대역 유무선 통신 응용분야에서 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 표준기술로 채택하고 있다 OFDM 방식의 고속 무선 데이터 통신를 위한 FFT 프로세서는 일반적으로 DSP(Digital Signal Processing)로 구현되었으나, 큰 전력 소비를 필요로 한다. OFDM의 단점인 전력문제를 보안하기 위해서 Current-mode FFT LSI가 제안되었다. 본 논문에서는 Current-mode FFT LSI의 구현을 위한 저전력 IVC를 설계하였다. 설계된 IVC는 FFT Block의 출력이 $13.65{\mu}A$ 이상일 때에 3V 이상의 전압을 출력하고, FFT Block의 출력이 $0.15{\mu}A$ 이하일 때에 0.5V 이하의 전압을 출력한다. 그리고 IVC의 총 소모전력은 약 1.65mW이다. $0.35{\mu}A$ 공정에서의 저전력 IVC를 설계함으로서, $0.35{\mu}A$ 공정에서의 Current-mode FFT LSI의 설계가 가능해졌다. 저전력 OFDM 통신용 Current-mode FFT LSI는 무선통신의 발전에 기여할 것으로 전망한다.

  • PDF

A Study on the Process & Device Characteristics of BICMOS Gate Array (BICMOS게이트 어레이 구성에 쓰이는 소자의 제작 및 특성에 관한 연구)

  • 박치선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.3
    • /
    • pp.189-196
    • /
    • 1989
  • In this paper, BICMOS gate array technology that has CMOS devices for logic applications and bipolar devices for driver applications is presented. An optimized poly gate p-well CMOS process is chosen to fabricate the BICMOS gate array system and the basic concepts to design these devices are to improve the characteristics of bipolar & CMOS device with simple process technology. As the results hFE value is 120(Ic=1mA) for transistor, and there is no short channel effects for CMOS devices which have Leff to 1.25um and 1.35um for n-channel, respectively, 0.8nx gate delay time of 41 stage ring oscillators is obtained.

  • PDF

Mode of Occurrence and Chemical Composition of Electrums from the Gubong Gold-Silver Deposits, Republic of Korea (구봉 금-은광상에서 산출되는 에렉트럼의 산출상태와 화학조성)

  • 유봉철;최선규;이현구
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.191-201
    • /
    • 2002
  • The Gubong gold-silver deposits if gold-silver-bearing hydrothermal massive quartz veins which were filled the fractures along fault shear (NE, NW) zones within Precambrian banded or granitic gneiss of Gyeonggi massif. Ore mineralization of this deposits is contained within a single stage of quartz vein which was formed by multiple episodes of fracturing and healing. Ore minerals are comported mainly of arsenopyrite, pyrite, sphalerite, chalcopyrite, galena with minor amounts of pyrrhotite, marcasite and electrum. The frequency and volume percentages of electrum associated with ore minerals from this deposits are recognized as follows; 44.5% and 54.3% with arsenopyrite, 24.3% and 33.8% with quartz, 12.6% and 0.1% with pyrite, 11.0% and 4.8% with galena, 5.0% and 7.0% with sphalerite and 2.5% and 0.02% with chalcopyrite, respectively. They show irregular (41.6%), subround (34.7%), elongate (17.0%) and granular (6.6%) shapes, respectively. Their grain size ranges from 2 to 150 um, but 90.9 percent of the grains are below 30 um. The chemical composition of electrums ranges from 26.39 to 72.51 Au atomic %. These composition (Au atomic %) on the basis of associated minerals are from 44.97 to 71.75 with arsenopyrite, pyrite, sphalerite and quartz, from 44.37 to 72.51 with quartz, from 35.40 to 41.01 with sphalerite and chalcopyrite, from 26.39 to 54.84 with pyrite, chalcopyrite, quartz and galena, from 28.49 to 53.28 with galena, respectively. We suggest that optimum recovery of gold would be obtained with reference to these results.

A Design of PLL and Spread Spectrum Clock Generator for 2.7Gbps/1.62Gbps DisplayPort Transmitter (2.7Gbps/1.62Gbps DisplayPort 송신기용 PLL 및 확산대역 클록 발생기의 설계)

  • Kim, Young-Shin;Kim, Seong-Geun;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper presents a design of PLL and SSCG for reducing the EMI effect at the electronic machinery and tools for DisplayPort application. This system is composed of the essential element of PLL and Charge-Pump2 and Reference Clock Divider to implement the SSCG operation. In this paper, 270MHz/162MHz dual-mode PLL that can provide 10-phase and 1.35GHz/810MHz PLL that can reduce the jitter are designed for 2.7Gbps/162Gbps DisplayPort application. The jitter can be reduced drastically by combining 270MHz/162MHz PLL with 2-stage 5 to 1 serializer and 1.35GHz PLL with 2 to 1 serializer. This paper propose the frequency divider topology which can share the divider between modes and guarantee the 50% duty ratio. And, the output current mismatch can be reduced by using the proposed charge-pump topology. It is implemented using 0.13 um CMOS process and die areas of 270MHz/162MHz PLL and 1.35GHz/810MHz PLL are $650um\;{\times}\;500um$ and $600um\;{\times}\;500um$, respectively. The VCO tuning range of 270 MHz/162 MHz PLL is 330 MHz and the phase noise is -114 dBc/Hz at 1 MHz offset. The measured SSCG down spread amplitude is 0.5% and modulation frequency is 31kHz. The total power consumption is 48mW.

High Efficiency 5A Synchronous DC-DC Buck Converter (고효율 5A용 동기식 DC-DC Buck 컨버터)

  • Hwang, In Hwan;Lee, In Soo;Kim, Kwang Tae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.352-359
    • /
    • 2016
  • This paper presents high efficiency 5A synchronous DC-DC buck converter. The proposed DC-DC buck converter works from 4.5V to 18V input voltage range, and provides up to 5A of continuous output current and output voltage adjustable down to 0.8V. This chip is packaged MCP(multi-chip package) with control chip, top side P-CH switch, and bottom side N-CH switch. This chip is designed in a 25V high voltage CMOS 0.35um technology. It has a maximum power efficiency of up to 94% and internal 3msec soft start and fixed 500KHz PWM(Pulse Width Modulation) operations. It also includes cycle by cycle current limit function, short and thermal shutdown protection circuit at 150℃. This chip size is 2190um*1130um includes scribe lane 10um.