• Title/Summary/Keyword: 0-mode

Search Result 4,616, Processing Time 0.03 seconds

Design and analysis of a mode size converter composed of periodically segmented taper waveguide (주기적으로 분리된 광도파로로 구성된 모드 크기 변환기의 설계 및 분석)

  • 박보근;정영철
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • In this paper, we designed a mode size converter to reduce coupling loss between optical waveguide and single mode fiber. The proposed mode converter is composed of periodically segmented tapered waveguide to achieve small size and easy fabrication. For the optimally designed mode size converter at 1550nm, the taper length is 500(equation omitted), the segmentation period 5ß:, the waveguide width of fiber contact section 1.3ß:, and duty cycle 0.95. The coupling loss of the optimized mode size converter is 0.33㏈/point, which is 1.27㏈/point lower than that without the mode size converter.

Effect of non-woven tissues on interlaminar fracture toughness of composite laminate (부직포가 복합적층판의 층간파괴인성에 미치는 효과)

  • 김영배;정성균;강진식;김태형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

Crack Growth Behavior by Fatigue Load under Mixed Mode(I+II) (혼합모드(I+II)에서 피로 하중에 의한 균열진전 거동)

  • Gong, B.C.;Choi, S.D.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.276-282
    • /
    • 2012
  • This study looked for Mode status of each for fatigue crack growth behavior about the repeat load of mode I and the static load of mode II. The experiment was performed in the state of the repetition frequency of the sine wave 10Hz, the stress ratio 0.1, maximum load 300kg.f, a static load 0, 100, 200, 300kg.f, As the experimental results, in mode of static load, while the load value increases, the crack growth rate is slower as the energy of a crack mixing grows. Mode I and the power mode II get an influence each other in the direction of crack propagation path, but as they eventually get closer to the breaking point of the crack growth, it is dominated by the mode I.

Treatment Plan Delivery Accuracy of the ViewRay System in Two-Headed Mode

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2016
  • The aim of this study is to investigate the delivery accuracy of intensity-modulated radiation therapy (IMRT) plans in the two-headed mode of the ViewRay$^{TM}$ system in comparison with that of the normal operation treatment plan of the machine. For this study, a total of eight IMRT plans and corresponding verification plans were generated (four head and neck, two liver, and two prostate IMRT plans). The delivered dose distributions were measured using ArcCHECK$^{TM}$ with the insertion of an ionization chamber. We measured the delivered dose distributions in three-headed mode (normal operation of the machine), two-headed mode with head 1 disabled, two-headed mode with head 2 disabled, and two-headed mode with head 3 disabled. Therefore, a total of four measurements were performed for each IMRT plan. The global gamma passing rates (3%/3 mm) in three-headed mode, head 1 disabled, head 2 disabled, and head 3 disabled were $99.9{\pm}0.1%$, $99.8{\pm}0.3%$, $99.6{\pm}0.7%$, and $99.7{\pm}0.4%$, respectively. The difference in the gamma passing rates of the three- and two-headed modes was insignificant. With 2%/2 mm, the rates were $96.6{\pm}3.6%$, $97.2{\pm}3.5%$, $95.7{\pm}6.2%$, and $95.5{\pm}4.3%$, respectively. Between three-headed mode and head 3 disabled, a statistically significant difference was observed with a p-value of 0.02; however, the difference was minimal (1.1%). The chamber readings showed differences of approximately 1% between three- and two-headed modes, which were minimal. Therefore, the treatment plan delivery in the two-headed mode of the ViewRay$^{TM}$ system seems accurate and robust.

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

Low Splicing Loss Technique between Standard Single Mode Fiber and High Δ Fiber (표준 단일모드 광섬유와 하이델타 광섬유사이의 저 손실 접속 기법)

  • Kim, Kwang-Taek;Yang, Byoung-Cheoul
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.169-174
    • /
    • 2008
  • In this paper, we have presented techniques to reduce the splicing loss between standard single mode fiber and high ${\Delta}$ single mode fiber based on the mode expanding and mode evolution induced by thermal treatment of the fibers. The experimental results show that mechanical splicing loss can be reduced from 2.3 dB to 0.1 dB through proper thermal treatment of the high ${\Delta}$ fiber. Meanwhile, we achieved $0.2{\sim}0.4dB$ of low splicing loss between two fibers by heating the splicing region using electric arcing or an oxygen flame.

The Effect of a Piezoelectric Ultrasonic Scaler with Curette Tip on Casting Gold Removal in Vitro (큐렛팁을 장착한 압전방식 초음파치석제거기의 작업조건에 따른 치과주조용 합금의 삭제에 관한 연구)

  • Lee, Young-Kyoo
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.3
    • /
    • pp.531-542
    • /
    • 2001
  • Periodontal debridement is most important procedure in periodontal treatment, because periodontal disease is the biofilm infection. The use of ultrasonic instrument has many clinical advantages compared to classical hand instrument. The introduction of newly developed ultrasonic scaler tips made the use of ultrasonic scaler popular. However the study of tooth substance removal according to the working parameters of ultrasonic scaler with newly developed tips is not sufficient. The purpose of this study is to evaluate the effects of working parameters of piezoelectric ultrasonic scaler with curette tip on casting gold removal. The working parameters was standardized by the sledge device which controls lateral force(0.5 N, 1.0 N, 2.0 N) and power setting was adjusted 2, 4, 8 in P mode and S mode and instrumentation time was 5 seconds. The defect depth and width were measured with profile meter and defect surface was examined by SME. The depth of defect was significantly large in S mode( $39.58{\pm}19.35{\mu}m$) compared to P mode( $8.37{\pm}6.98{\mu}m$). There was significant decrease of depth of defect between 1.0N($32.87{\pm}27.18{\mu}m$) and 2.0N( $14.86{\pm}15.04{\mu}m$). The area of defect was also significantly large in S mode($4482.42{\pm}3551.71{\mu}m^2$) compared to P mode( $922.06{\pm}960.32{\mu}m^2$). There was significant decrease of area of defect between 1.0N($3889.12{\pm}3936.00{\mu}m$) and 2.0N( $974.66{\pm}986.01{\mu}m$). The change of mode did not effect on the width of the defect. The change of power setting did not effect on the depth, width, and area of defect. In spite of limitation of this study it could be concluded that the use of piezoelectric ultrasonic scaler with curette tip on S mode could make significant tooth substance loss.

  • PDF

The Effect of Pressure Support on Respiratory Mechanics in CPAP and SIMV (CPAP 및 SIMV Mode하에서 Pressure Support 사용이 호흡역학에 미치는 효과)

  • Lim, Chae-Man;Jang, Jae-Won;Choi, Kang-Hyun;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Park, Pyung-Whan;Choi, Jong-Moo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.351-360
    • /
    • 1995
  • Background: Pressure support(PS) is becomimg a widely accepted method of mechanical ventilation either for total unloading or for partial unloading of respiratory muscle. The aim of the study was to find out if PS exert different effects on respiratory mechanics in synchronized intermittent mandatory ventilation(SIMV) and continuous positive airway pressure (CPAP) modes. Methods: 5, 10 and 15 cm $H_2O$ of PS were sequentially applied in 14 patients($69{\pm}12$ yrs, M:F=9:5) and respiratory rate (RR), tidal volume($V_T$), work of breathing(WOB), pressure time product(PTP), $P_{0.1}$, and $T_1/T_{TOT}$ were measured using the CP-100 pulmonary monitor(Bicore, USA) in SIMV and CPAP modes respectively. Results: 1) Common effects of PS on respiratory mechanics in both CPAP and SIMV modes As the level of PS was increased(0, 5, 10, 15 cm $H_2O$), $V_T$ was increased in CPAP mode($0.28{\pm}0.09$, $0.29{\pm}0.09$, $0.31{\pm}0.11$, $0.34{\pm}0.12\;L$, respectively, p=0.001), and also in SIMV mode($0.31{\pm}0.15$, $0.32{\pm}0.09$, $0.34{\pm}0.16$, $0.36{\pm}0.15\;L$, respectively, p=0.0215). WOB was decreased in CPAP mode($1.40{\pm}1.02$, $1.01{\pm}0.80$, $0.80{\pm}0.85$, $0.68{\pm}0.76$ joule/L, respectively, p=0.0001), and in SIMV mode($0.97{\pm}0.77$, $0.76{\pm}0.64$, $0.57{\pm}0.55$, $0.49{\pm}0.49$ joule/L, respectively, p=0.0001). PTP was also decreased in CPAP mode($300{\pm}216$, $217{\pm}165$, $179{\pm}187$, $122{\pm}114cm$ $H_2O{\cdot}sec/min$, respectively, p=0.0001), and in SIMV mode($218{\pm}181$, $178{\pm}157$, $130{\pm}147$, $108{\pm}129cm$ $H_2O{\cdot}sec/min$, respectively, p=0.0017). 2) Different effects of PS on respiratory mechanics in CP AP and SIMV modes By application of PS (0, 5, 10, 15 cm $H_2O$), RR was not changed in CPAP mode($27.9{\pm}6.7$, $30.0{\pm}6.6$, $26.1{\pm}9.1$, $27.5{\pm}5.7/min$, respectively, p=0.505), but it was decreased in SIMV mode ($27.4{\pm}5.1$, $27.8{\pm}6.5$, $27.6{\pm}6.2$, $25.1{\pm}5.4/min$, respectively, p=0.0001). $P_{0.1}$ was reduced in CPAP mode($6.2{\pm}3.5$, $4.8{\pm}2.8$, $4.8{\pm}3.8$, $3.9{\pm}2.5\;cm$ $H_2O$, respectively, p=0.0061), but not in SIMV mode($4.3{\pm}2.1$, $4.0{\pm}1.8$, $3.5{\pm}1.6$, $3.5{\pm}1.9\;cm$ $H_2O$, respectively, p=0.054). $T_1/T_{TOT}$ was decreased in CPAP mode($0.40{\pm}0.05$, $0.39{\pm}0.04$, $0.37{\pm}0.04$, $0.35{\pm}0.04$, respectively, p=0.0004), but not in SIMV mode($0.40{\pm}0.08$, $0.35{\pm}0.07$, $0.38{\pm}0.10$, $0.37{\pm}0.10$, respectively, p=0.287). 3) Comparison of respiratory mechanics between CPAP+PS and SIMV alone at same tidal volume. The tidal volume in CPAP+PS 10 cm $H_2O$ was comparable to that of SIMV alone. Under this condition, the RR($26.1{\pm}9.1$, $27.4{\pm}5.1/min$, respectively, p=0.516), WOB($0.80{\pm}0.85$, 0.97+0.77 joule/L, respectively, p=0.485), $P_{0.1}$($3.9{\pm}2.5$, $4.3{\pm}2.1\;cm$ $H_2O$, respectively, p=0.481) were not different between the two methods, but PTP($179{\pm}187$, $218{\pm}181 cmH_2O{\cdot}sec/min$, respectively, p=0.042) and $T_1/T_{TOT}$($0.37{\pm}0.04$, $0.40{\pm}0.08$, respectively, p=0.026) were significantly lower in CPAP+PS than in SIMV alone. Conclusion: PS up to 15 cm $H_2O$ increased tidal volume, decreased work of breathing and pressure time product in both SIMV and CPAP modes. PS decreased respiration rate in SIMV mode but not in CPAP mode, while it reduced central respiratory drive($P_{0.1}$) and shortened duty cycle ($T_1/T_{TOT}$) in CPAP mode but not in SIMV mode. By 10 em $H_2O$ of PS in CPAP mode, same tidal volume was obtained as in SIMV mode, and both methods were comparable in respect to RR, WOB, $P_{0.1}$, but CPAP+PS was superior in respect to the efficiency of the respiratory muscle work (PTP) and duty cycle($T_1/T_{TOT}$).

  • PDF

A Mode Selector for Operation with Linear and Switching Regulator (선형방식과 스위칭 방식의 레귤레이터를 함께 구동하기 위한 Mode Selector)

  • Cho, Han-Hee;Park, Kyeong-Hyeon;Jung, Jun-Mo;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.260-264
    • /
    • 2015
  • In this paper, we propose mode selector for operating a switching system and regulator of linear system to detect the load current. The proposed mode selector can be a mode switching of linear system and switching system, and it has been proposed to compensate for the disadvantages of regulator of switching system with low efficiency in light load conditions. At light load conditions, the mode selector is possible to provide a high efficiency in light load condition by switching the mode to the regulator of linear system. The mode selector was designed to using a Dongbu Hitek $0.18{\mu}m$ CMOS process.