• 제목/요약/키워드: -shape design)

검색결과 8,023건 처리시간 0.03초

원형소재를 이용한 프로파일 다단 형상인발 공정설계 (Process Design for Multi-pass Profile Drawing using Round Materials)

  • 이인규;최창영;이상곤;정명식;이재욱;김다혜;조용재;김병민
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.234-240
    • /
    • 2015
  • Multi-pass shape drawing is very important to produce steel profiles in round samples. In the current study, a process design system is developed for a multi-pass shape drawing. In general, the number of passes for a multi-pass shape drawing is 2 to 3 when the reduction ratio, drawing stress, and productivity are considered. Therefore, calculating the drawing stress and designing the intermediated die shapes are very important. In order to calculate the drawing stress, a shape drawing load prediction method is proposed using a general axisymmetric drawing load prediction model. An intermediate die shape design method is proposed using the initial and the final product shapes. Based on this analysis, a process design system is developed for multi-pass shape drawing for steel profiles. The system works with AutoCAD. The system was applied to design a shape drawing of a spline.

유한요소법에 의한 이중 금속봉 압출 공정의 금형 형상 최적설계 (Die Shape Optimal Design in Bimetal Extrusion by The Finite Element Method)

  • 변상민;황상무
    • 소성∙가공
    • /
    • 제3권3호
    • /
    • pp.302-319
    • /
    • 1994
  • A new approach to die shape optimal design in bimetal extrusion of rods is presented. In this approach, the design problem is formulated as a constrained optimization problem incorporated with the finite element model, and optimization of the die shape is conducted on the basis of the design sensitivities. The combinations of the core and sleeve materials.

  • PDF

우물정자형 Sub-frame의 블랭크 설계 (Optimum Blank Design of Automobile Sub-Frame)

  • 김종엽;김낙수;허만성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.185-195
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shape and target contour shape into account. Based on the method, a computer program composed of blank design module, FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modifications. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed. The thickness distribution and the level of punch load is improved. Also, the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

피스톤 링 제조용 선재의 다단 형상 압연공정 설계 (Process Design of Multi-Pass Shape Rolling for Manufacturing Piston Ring Wire)

  • 김남진;이경훈;임상혁;이제문;김병민
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.28-34
    • /
    • 2017
  • Multi-pass shape rolling is performed to produce long products of arbitrary cross-sectional shapes. In the past, the multi-pass shape rolling process has been designed by the trial and error method or the experience of experts based on the empirical approach. Particularly, the design of roll caliber in shape rolling is important to improve product quality and dimensional accuracy. In this paper, the caliber design and pass schedule of multi-pass shape rolling were proposed for manufacturing piston ring wire. In order to design roll caliber, major shape parameter and dimension was determined by analysis of various caliber design. FE-simulation was conducted to verify effectiveness of proposed process design. At first, forming simulation was performed to predict shape of the product. Then, fracture of the wire was evaluated by critical damage value using normalized Cockcroft-Latham criteria. The experiment was carried out and the results are within the allowable tolerance.

컴퓨터를 이용한 디자인 프로세스에 있어서 형태패턴의 스키마적 표현을 이용한 건축형태의 유사성 판단에 관한 연구 (Recognition of Shape Similarity using Shape Pattern Representation for Design Computation)

  • 차명열
    • 디자인학연구
    • /
    • 제15권4호
    • /
    • pp.337-346
    • /
    • 2002
  • 디자인 지식의 습득, 저장, 검색 및 응용과 같은 컴퓨터를 이용한 디자인 과정에 있어서, 창조적이며 디자인 요구에 적당한 결과물을 생산하는데 필요한 디자인 지식을 인지하고 습득하는 과정은 매우 중요하다 하겠다. 특히 인간의 인지능력과 유사한 기능을 같고 중요한 형태 디자인 지식을 습득하는 것은 필수적이다. 형태의 물리적인 속성에 의하여 인지되는 1차원적인 형태 지식이 아닌, 이들로부터 형성되는 2차원 또는 그 이상의 차원에서 인지되는 형태 디자인 지식을 인지해야만 한다. 지식의 인지 및 습득은 기억 장치에 저장되어 있는 지식과 인지되는 지식을 비교하여 동일하거나 유사한 경우 그 디자인 지식이 습득된다. 이때 1차원적인 디자인 지식은 형판 매칭과 속성 매칭에 의하여 그 유사성이 쉽게 인지되지만, 2차원 이상의 디자인 지식에 대해서는 인간은 쉽게 인지하나 컴퓨터를 이용한 인지에는 어려움이 많다. 본 연구는 컴퓨터에 이러한 능력을 부여하기 위하여 형태패턴 표현을 이용한 형태의 유사성을 판별하는 방법에 대하여 설명하였다.

  • PDF

형상 파라미터화 방법을 이용한 엔진 마운트용 고무의 형상 최적화 (Optimum Shape Design of Engine Mounting Rubber Using a Parametric Approach)

  • 김중재;김헌영
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.33-41
    • /
    • 1994
  • The procedure to design the engine mount is briefly discussed and the optimum shape design process of engine mounting rubber using a parametric approach is suggested. An optimization code is developed to determine the shape to meet the stiffness requirements of engine mounts, coupled with the commercial nonlinear finite element program ABAQUS. A bush type engine mount used in a current passenger car is chosen for an application model. The shape from the result of the parameter optimization is determined as a final model with some modifications. The shape and stiffness of each optimization stage are shown and the stiffness of the optimized model along the principal direction is compared with the design specification of the current model. Finally, an overview of the current status and future works for the engine mount design are discussed.

  • PDF

유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계 (Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms)

  • 여백유;박춘욱;강문명
    • 한국공간구조학회논문집
    • /
    • 제2권3호
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

열 변형과 목적형상을 고려한 선체구조의 형상 최적설계 (Shape Design Optimization of Ship Structures Considering Thermal Deformation and Target Shape)

  • 박성호;최재연;김민근;조선호
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.430-437
    • /
    • 2010
  • In this paper, we develop a shape design optimization method for thermo-elastoplasticity problems that is applicable to the welding or thermal deformation problems of ship structures. Shell elements and a programming language APDL in a commercial finite element analysis code, ANSYS, are employed in the shape optimization. The point of developed method is to determine the design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of surfaces are selected as the design parameters. The modified method of feasible direction (MMFD) and finite difference sensitivity are used for the optimization algorithm. Two numerical examples demonstrate that the developed shape design method is applicable to existing hull structures and effective for the structural design of ships.

침투경계조건과 CFD를 이용한 터빈 역형상 설계에 관한 연구 (A Study on the Inverse Shape Design of a Turbine Cascade Using the Permeable Boundary Condition and CFD)

  • 이은석;설우석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3116-3121
    • /
    • 2007
  • In this paper, the inverse shape design is introduced using the permeable wall boundary condition. Inverse shape design defines the blade shape for the prescribed Mach numbers or pressure distribution on its surface. It calculates the normal mass flux from the difference between the calculated and prescribed pressure at the surface. A new geometry can be achieved after applying the quasi one-dimensional continuity equation from the leading edge to the trailing edge. For validation of this method, two test cases are studied. The first test case of inverse shape design illustrates the cosine bump with a strong shock. After seven geometry modifications, the shock-free bump geometry can be obtained. The second example concerns the redesign of a transonic turbine cascade. The initial isentropic Mach distribution has a peak on the upper surface. The target isentropic Mach number distribution was imposed smoothly. The peak of Mach distribution has disappeared at the final geometry. This proposed inverse design method has proven to be an efficient and robust tool in turbomachinery design fields.

  • PDF

박판구조물의 방사소음에 대한 형상 설계민감도 해석 (Shape Design Sensitivity Analysis For The Radiated Noise From Thin body)

  • 이제원;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.90-95
    • /
    • 2001
  • A continuum-based shape design sensitivity analysis (DSA) method is presented for the acoustic radiation from thin body. The normal derivative integral formulation is employed as an analysis formulation and differentiated directly by using material derivative to get the acoustic shape design sensitivity. In the acoustic sensitivity formulation, derivative coefficients of the structural normal velocities on the surface are required as the input. Thus, the shape design sensitivities of structural velocities on the surface with respect to the shape change are also calculated with continuum approach. A simple disk is considered as a numerical example to validate the accuracy and efficiency of the analytical shape design sensitivity equations derived in this research. This research should be very helpful to design an application involving thin body and to change its acoustic characteristics.

  • PDF