• Title/Summary/Keyword: -irradiation

Search Result 7,745, Processing Time 0.032 seconds

Effect of irradiation on the dental pulp tissues in streptozotocin-induced diabetic rats (방사선조사가 당뇨 백서의 치수조직에 미치는 영향)

  • Kang Ho-Duk;Hwang Eui-Hwan;Lee Sang-Rae
    • Imaging Science in Dentistry
    • /
    • v.35 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • Purpose : To observe the histopathological changes in the pulp tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. Materials and Methods : The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups: control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. Results : In the diabetes group, capillary dilatation was observed. However, there was no obvious morphologic alteration of the odontoblasts. In the irradiation group, generalized necrosis of the dental pulp tissues was observed. Vacuolation of the odontoblasts and dilatation of the capillaries were noted in the early experimental phases. In the diabetes-irradiation group, generalized degeneration of the dental pulp tissues was observed. Vacuolation of the dental pulp cells and the odontoblasts was noted in the late experimental phases. Conclusion : This experiment suggests that dilatation of the capillaries in the dental pulp tissues is induced by diabetic state, and generalized degeneration of the dental pulp tissues is induced by irradiation of the diabetic group.

  • PDF

Effect of Food Irradiation Education on Food Majoring College Students' Knowledge and Acceptance of Irradiated Food (식품전공 대학생들의 방사선 조사식품에 대한 교육전.후의 인지도 및 수용성 변화)

  • Nam, Hye-Seon;Kim, Kyeung-Eun;Yang, Jae-Seung;Ly, Sun-Yung
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.4
    • /
    • pp.279-285
    • /
    • 2000
  • A survey was conducted to examine the effect of food irradiation education on college students' knowledge and acceptance of food irradiation. The instrument for the knowledge and acceptance of food irradiation was administered before and after food irradiation education, to 150 students majoring in food and nutrition or food technology in the Chungnam National University. Before the education approximately 93% of the respondents did not know that radioactivity dose not remain in food after irradiation; whereas, after education half of them thought that radioactivity dose not remain in irradiated food. Knowledge about food irradiation has improved through education. The education significantly increased all the mean scores of need for food irradiation and willingness to use irradiated foods for the six food groups (p<0.01). The education significantly decreased the mean scores of concern about the irradiated food for all the six food groups (p<0.01). Although the responses to irradiated foods are, in general, negative or neutral even after education, the mean scores of acceptance of the irradiated foods have improved through education in all the six food groups (p<0.01). In conclusion, this study showed that food irradiation education may positively affect the college students' knowledge and acceptance of food irradiation, and that the development of both the appropriate detection methods to identify irradiated foods and the education programs to enlighten the college students are needed.

  • PDF

Effect of LEDs Light of 633 nm Wavelength in Skin of Organism (633 nm 파장의 LED 광원이 생체 피부에 미치는 영향)

  • Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.760-765
    • /
    • 2008
  • Low power laser therapy is internationally certified and is known to be effective in stimulating DNA in living organisms, increasing protein synthesis and activating cell division, smoothing blood circulation, promoting cell activation, cell regeneration and function. It also has anti-inflammatory, anti-edemic, anti-fibrous dysplastic and neuralogic hyperfunctional effects. This study was intended to verify the effect of LED irradiation therapy on wound healing in cell and animal tests by applying LED irradiator using a laser and laser diode, which was independently designed and developed to emit beams of similar wavelength to that of a laser. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity and reservation. In case of cell proliferation experiment, each experiment was performed to irradiation group and non-irradiation group for tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro-plate reader. In the wound healing experiment, 1$cm^2$ wounds on the skin wound of SD-Rat(Sprague-Dawley Rat) were made. Light irradiation group and none light irradiation group divided, each group was irradiated one hour a day for 9 days. As a result, the cell increase of tissue cells was verified in irradiation group as compared to non-irradiation group. And, compared with none light irradiation group, the lower incidence of inflammation and faster recovery was shown in light irradiation group.

Effect of irradiation on the Streptococcus mutans (방사선조사가 Streptococcus mutans에 미치는 영향)

  • Ahn, Ki-Dong;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Purpose : To observe direct effect of irradiation on cariogenic Streptooccus mutans. Materials and Methods : S. mutans GS5 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Viability and changes in antibiotic sensitivity, morphology, transcription of virulence factors, and protein profile of bacterium after irradiation were examined by pour plate, disc diffusion method, transmission electron microscopy, RT-PCR, and SDS-PAGE, respectively. Results : After irradiation with 10 and 20Gy, viability of S. mutans was reduced. Further increase in irradiation dose, however, did not affect the viability of the remaining cells of S. mutans. Irradiated 5. mutans was found to have become sensitive to antibiotics. In particular, the bacterium irradiated with 40Gy increased its susceptibility to cefotaxime, penicillin, and tetracycline. Under the transmission electron microscope, number of morphologically abnormal cells was increased as the irradiation dose was increased. S. mutans irradiated with 10 Gy revealed a change in the cell wall and cell membrane. As irradiation dose was increased, a higher number of cells showed thickened cell wall and cell membrane and Iysis, and appearance of ghost cells was noticeable. In RT-PCR, no difference was detected in expression of gtfB and spap between cells with and without irradiation of 40Gy. In SDS-PAGE, proteins with higher molecular masses were gradually diminished as irradiation dose was increased. Conclusion : These results suggest that irradiation affects the cell Integrity of S. mutans, as observed by SDS-PAGE, and as manifested by the change in cell morphology, antibiotic sensitivity, and eventually viability of the bacterium.

  • PDF

MECHANICAL AND IRRADIATION PROPERTIES OF ZIRCONIUM ALLOYS IRRADIATED IN HANARO

  • Kwon, Oh-Hyun;Eom, Kyong-Bo;Kim, Jae-Ik;Suh, Jung-Min;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, $1.1{\times}10^{21}\;n/cm^2$). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed.

A STUDY OF MORPHOGENESIS OF DIGITAL MALFORMATION ON RAT EMBRYO BY X-IRRADIATION (방사선조사시 태내백서의 지지기형성과정에 관한 실험적 연구)

  • Khim Jhai Dhuck
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 1981
  • The author studied on the effects of x-irradiation to the development of digital malformation in gestation rats. The time-matings occured between 6 p.m. and 8 a.m. and females with copulation. plugs at 8 a.m. were isolated and properly marked for evidence of copulation. The lower abdomen of mothers were exposed to x-irradiation on the 11½th day of gestation, the critical period developing digital malformation, respectively 100, 150, 200, 250, 300 and 350 rads. At 18½th day of post-conception total 50 pregnant females were dissected and the incidence of digital malformations were obtained. Rat embryos on the 12, 13, 14, 15, 16th day of gestation irradiated by 250 rads were examined for morphogenesis of digital malformation. Digital radiating lines were examined in water and histologically by H-E stain. Supra vital stain samples by Nile-blue sulfate in 37℃ normal saline were prepared for the observation of cell necrosis regions and morphogenesis of digits. The results obtained were as follows; 1. By x-irradiation on 11th day of gestation, digital malformations of Ectrodactylia, Syndactylia Polydactylia and Hematodactylia were developed. Ectrodactylia showed the effective relationship to the amount of irradiation, however Syndactylia ans Polydactylia did not. 2. By x-irradiation, cell necrosis of digital germ was appeared markedly, but in 48 hours after irradiation was depressed to the periphery of digital germ and in 72hours after irradiation was disappeared. Digital radiating line showed marked stage of malformation in 48hours after irradiation and continued to show the same amount of physiological cell necrosis as the compared control group in 72hours. after irradiaion. But in the Syndactylia, physiological cell necrosis was not able to be recognized. 3. Ectrodactylia induced by x-irradiation was considered as the direct resoult of cell necrosis of digital origin, however, Polydactylia and Syndactylia were considered as the resoult of some effect in repair process of x-irradiation damages.

  • PDF

THE EFFECTS OF IRRADIATION AND CALCIUM-DEFICIENT DIET ON DENTIN AND CEMENTUM FORMATION OF RAT MOLAR (방사선조사와 저칼슘식이가 백서구치의 상아질과 백악질형성에 미치는 영향에 관한 실험적 연구)

  • Shin Jae-Chang;Hwang Eui-Hwan;Lee Sang-Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.87-109
    • /
    • 1998
  • The present study was designed to elucidate the effects of the Co-60 γ irradiation and/or calcium­deficient diet on the dentin and cementum formation of rat molar. The pregnant three-week old Sprague­Dawley rats were used for the study. The experimental group was divided into two groups, irradiation/normal diet group and irradiation/calcium-deficient diet group. The control group was non­irradiation/normal diet group. The abdomen of the rats at the 19th day of pregnancy were irradiated with single absorbed dose of 350cGy. The rat pups were sacrificed on the 14th day after delivery and the maxillae including molar tooth germ were taken. The specimens including the 1st molar tooth germ were prepared to make tissue sections for light and transmission electron microscopy. Some of tissue sections for light microscopy were stained immunohistochemically with anti-fibronectin antibody. The results were as follows; 1. The Hertwig's epithelial root sheath cells, which are related to the differentiation of the tooth-forming cells, showed irregular cellular arrangement, decrease of intercellular junctional complex, and decreased immunoreactivity to the fibronectin after irradiation. These were more severe in the irradiation/calcium-deficient diet group. 2. The cementoblasts at the cementum-forming area showed chromatin clumpings after irradiation. The immu noreactivity to the fibronectin was weaken after irradiation, especially irradiation/calcium-deficient diet group. 3. The odontoblasts at the dentin-forming area showed increase of lysosomes in the cytoplasm and destruction of intercellular junctional complex. The irradiation/calcium-deficient diet group showed decrease of number and density of the electron dense particles and a large number of vacuoles scattered in the dentin matrix. The immunoreactivity was weaken.

  • PDF

IRRADIATION DEVICE FOR IRRADIATION TESTING OF COATED PARTICLE FUEL AT HANARO

  • Kim, Bong Goo;Park, Sung Jae;Hong, Sung Taek;Lee, Byung Chul;Jeong, Kyung-Chai;Kim, Yeon-Ku;Kim, Woong Ki;Lee, Young Woo;Cho, Moon Sung;Kim, Yong Wan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.941-950
    • /
    • 2013
  • The Korean Nuclear-Hydrogen Technology Development (NHTD) Plan will be performing irradiation testing of coated particle fuel at HANARO to support the development of VHTR in Korea. This testing will be carried out to demonstrate and qualify TRISO-coated particle fuel for use in VHTR. The testing will be irradiated in an inert gas atmosphere without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The irradiation device is being loaded and irradiated into the OR5 hole of the in HANARO core from August 2013. The device will be operated for about 150 effective full-power days at a peak temperature of about $1030^{\circ}C$ in BOC (Beginning of Cycle) during irradiation testing. After a peak burn-up of about 4 atomic percentage and a peak fast neutron fluence of about $1.7{\times}10^{21}\;n/cm^2$, PIE (Post-Irradiation Examination) of the irradiated coated particle fuel will be performed at IMEF (Irradiated Material Examination Facility). This paper reviews the design of test rod and irradiation device for coated particle fuel, and discusses the technical results for irradiation testing at HANARO.

Postharvest Disease Control of Colletotrichum gloeosporioides and Penicillium expansum on Stored Apples by Gamma Irradiation Combined with Fumigation

  • Cheon, Wonsu;Kim, Young Soo;Balaraju, Kotnala;Kim, Bong-Su;Lee, Byeong-Ho;Jeon, Yongho
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.460-468
    • /
    • 2016
  • To study the control of postharvest decay caused by Colletotrichum gloeosporioides and Penicillium expansum, gamma irradiation alone or in combination with fumigation was evaluated to extend the shelf life of apples in South Korea. An irradiation dose of 2.0 kGy resulted in the maximum inhibition of C. gloeosporioides and P. expansum spore germination. The gamma irradiation dose required to reduce the spore germination by 90% was 0.22 and 0.35 kGy for C. gloeosporioides and P. expansum, respectively. Microscopic observations revealed that when the fungal spores were treated with gamma irradiation (4.0 kGy), conidial germination was stopped completely resulting in no germ tube formation in C. gloeosporioides. Treatment with the eco-friendly fumigant ethanedinitrile had a greater antifungal activity against C. gloeosporioides and P. expansum in comparison with the non-treated control under in vitro conditions. The in vitro antifungal effects of the gamma irradiation and fumigation treatments allowed us to further study the effects of the combined treatments to control postharvest decay on stored apples. Interestingly, when apples were treated with gamma irradiation in combined with fumigation, disease inhibition increased more at lower (< 0.4 kGy) than at higher doses of irradiation, suggesting that combined treatments reduced the necessary irradiation dose in phytosanitary irradiation processing under storage conditions.

Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel (양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향)

  • Lim, Yun-Soo;Kim, Dong-Jin;Hwang, Seong Sik;Choi, Min Jae;Cho, Sung Whan
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.158-168
    • /
    • 2021
  • Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.