• Title/Summary/Keyword: -cyclodextrin

Search Result 573, Processing Time 0.029 seconds

A MOLECULAR SIMULATION STUDY ON BETA-CYCLODEXTRIN POLYMERIC MEMBRANES

  • Tocci, Elena;Fama, Angelo;Perrone, Maria Pia;Russo,Nino;Drioli, Enrico
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.57-59
    • /
    • 2003
  • Molecular dynamics simulations have been performed on $\beta$-cyclodextrins octyl-derivative (b-CD) encapsulated into a polymer matrix of glassy poly(ether ether ketone) (PEEK-WC) material to investigate the effects of the complexation of p-nitrophenilacetate and naringin molecules with the aim to study the recognition properties of b-CD.

  • PDF

CGTase의 대량생산을 통한 CD생산공정의 최적화

  • 정일형;서효진;김성구
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.193-194
    • /
    • 2001
  • Cyclodextrin(CD)의 산업화에 필요한 응용기술의 개발에 대해서는 주로 식품과 의약품 관련 산업에서 활발히 진행되고 있다. 실 예로 밀감 쥬스 시럽의 경우, 밀감 성분중 hesperidin이라는 flavonoid 배당체가 석출되어 시럽을 혼탁 시키는 원인이 된다. 시럽 혼탁을 방지하기 위해 $\beta$-CD를 첨가하여 난용성물질인 hesperidin을 포집하여 용해도를 증가시키므로 제품의 질을 개량하고 있다. (중략)

  • PDF

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

In Vitro Proliferation Model of Helicobacter pylori Required for Large-Scale Cultivation

  • Oh, Heung-Il;Lee, Heung-Shick;Kim, Kyung-Hyun;Paek, Se-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.367-374
    • /
    • 2000
  • The composition of dissolved gases and nutrients in a liquid medium were determined for establishment of the optimum conditions for in vitro culture of Helicobacter pylori. A microaerobic condition facored by the organism was prepared by adjusting the partial pressure of the gas, agitation speed, and viscosity of the medium. The gaseous concentrations were controlled by utilizing CampyPak Plus that reduced oxygen while augmenting carbon dioxide. Agitation of the broth facilitated the oxygen transfer to the cells, yet inhibited the growth at high rates. An increase of viscosity in the medium repressed the culture although this variable was relatively insignificant. The chemical constituents of the liquid broth were examined to establish an economic model for H. pylori cultivation. The microbe required a neutral pH for optimum growth, and yet was also able to proliferate in an acidic condition, presumably by releasing the acidity-modulating enzyme, urease. Cyclodextrin and casamino acid were investigated as growth enhancers in place of serum, while yeast extract unexpectedly inhibited the cells. A low concentration of glucose, the unique carbon source for the organism, increased the cell density, yet high concentrations resulted in an adverse effect. Under optimally dissolved gas conditions, the cell concentration in brucella broth supplemented with serum substitutes and glucose reached $1.6{\times}10^8$ viable cells/ml which was approximately 50% higher than that obtained in the liquid medium added with only cyclodextrin or serum.

  • PDF