• Title/Summary/Keyword: 힘 센서

Search Result 319, Processing Time 0.025 seconds

Design and fabrication of micro force sensor using MEMS fabrication technology (MEMS 제작기술을 이용한 미세 힘센서 설계 및 제작)

  • 김종호;조운기;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.497-502
    • /
    • 2002
  • This paper describes a design methodology of a tri-axial silicon-based farce sensor with square membrane by using micromachining technology (MEMS). The sensor has a maximum farce range of 5 N and a minimum force range of 0.1N in the three-axis directions. A simple beam theory was adopted to design the shape of the micro-force sensor. Also the optimal positions of piezoresistors were determined by the strain distribution obtained from the commercial finite element analysis program, ANSYS. The Wheatstone bridge circuits were designed to consider the sensitivity of the force sensor and its temperature compensation. Finally the process for microfabrication was designed using micromachining technology.

  • PDF

Strain Analysis of a Six Axis Force-Torque Sensor Using Cross-Shaped Elastic Structure with Circular Holes (원구멍이 있는 십자형 탄성체를 가진 6축 힘, 토크 센서의 변형률 해석)

  • Kim, Joo-Yong;Kang, Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.5-14
    • /
    • 1999
  • The necessity of six axis force-torque sensors is well recognized in the fields of automatic fine assembly, deburring polishing, and automatic fish processing using robotic manipulators. The paper proposes a simple and compact elastic structure of the force-torque sensor which senses externally applied three force and three torque components. Rough surface strain distribution of the elastic structure is examined analytically, and then more accurate surface strain are obtained from finite element analysis. The compliance matrix which is a linear relationship between force components and strain measurements is obtained for the proposed sensor. Some basic principles of measuring 3 force and torque components are also presented.

  • PDF

Uncertainty Evaluation of a Multi-axis Force/Moment Sensor and Its Application (다축 힘/모멘트센서의 불확도평가 및 응용에 관한 연구)

  • 김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.177-180
    • /
    • 2001
  • This paper describes the calibration method and the evaluation method of relative expanded uncertainty for a multi-axis force/moment sensor. This sensor should be calibrated to be use in the industry. Now, the confidence of the calibration result is expressed with interference error. But it is no inaccurate, because an interference error, besides, a reproducibility error of the sensor, a error of this six-axis force/moment sensor calibrator, and so on. Thus, in order to accurately evaluate the relative expanded uncertainty of it, the concept of the uncertainty should be induced, and these errors must be contained in the relative expanded uncertainty. In this paper, the calibration method is exhibited and the evaluation method of the relative expanded uncertainty is also exhibited. And, a six-axis force/moment sensor was calibrated and the relative expanded uncertainty was evaluated.

  • PDF

A Study on Real Time Measurement of Frictional Coefficients by using Multi-components Load Cell (다축 힘센서를 이용한 마찰계수 실시간 측정방법 연구)

  • 권현준;권영하;박경희;오택열;백영남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.481-485
    • /
    • 2003
  • This study describes the real-time measurement system which consist of multi-components load cell and linear motor. Operationg and data acquisition is controlled by PC. Multi-components load cell measures simultaneously the vertical force Fz and frictional force Fx when contactors move on sample surface. Linear motor is used to translate with constant speed without vibration. The frictional coefficient is calculated by Matlab$^{TM}$. The frictional coefficients between Al. plates. and fingertip and fabrics are measured.d.

  • PDF

Signal Processing Method for Noise Reduction of Multi-Axis Force Sensors (다축힘센서의 노이즈신호 개선을 위한 신호처리 방법)

  • 김용찬;강철구;남현도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1026-1029
    • /
    • 2003
  • There are always some errors in force sensing of multi-axis force sensors that aggravate sensor performance. Error sources may be classified mainly in two groups. One is structural error due to inaccuracy of sensor body, and the other is error due to noise signals existing in the sensed information. This paper presents a brief review about the principle of multi-axis force sensors, and then a method that can reduce the effect of noise signals. The method is to read digital signals in computer instead of analog voltage signals. We can eliminate the bad effect of electromagnetic waves emitted from computer and of 60 Hz noise emitted from AC source by the proposed method. The proposed method is investigated through experimental demonstration. The experimental results show the proposed method improves the sensor performance significantly.

  • PDF

An Experimental Study on the Stewart Platform-Based 6 Axis Froce/Torque Sensor (Stewart 플랫폼 형식의 6축 힘/토크 센서에 대한 실험적 연구)

  • 강철구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.393-397
    • /
    • 1996
  • A stewart platform-based force/torque sensor with 6 elastic legs was designed and manufactured Kinematic design parameters were determined so that the force/torque sensor might have the isotropic force/torque properities. In a force/torque analysis, it was used the solution of forward kinematics by linearization of the solution of the inverse kinematics. The performance of te force/torque sensor was investigated by measurement experiments. The gravity compensation was conducted to reduce the force and torque effects by the weights of the upper plate, joints and other sensor parts.

  • PDF

A Study of Development for Contact CMM Probe using Three-Component Force Sensor (3 분력 힘 센서를 이용한 CMM 용 접촉식 프로브의 개발에 관한 연구)

  • 송광석;권기환;박재준;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.101-107
    • /
    • 2003
  • A new mechanical probe for 3-D feature measurement on coordinate measuring machines (CMMs) is presented. The probe is composed of the contact stylus and the three-component force sensor. With the stylus mounted on the force sensor, the probe can not only measure 3-D features, but also detect contact force acting on the stylus tip. Furthermore, the probing direction and the actual contact position can be determined by the relationship among three components of contact force to be detected. In this paper, transformation matrix representing the relationship between the external force acting on the stylus tip and the output voltages of measurement gauges is derived and calibrated. The prototype of probe is developed and its availability is investigated through the experimental setup for calibration test of the probe. A series of experimental results show that the proposed probe can be an effective means of improving the accuracy of touch probing on CMM.

A Study on the Development of the CMM Probe using Force-Sensor (힘 센서를 이용한 CMM용 프로브 개발을 위한 연구)

  • 송광석;권기환;박재준;조남규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.411-415
    • /
    • 2002
  • In this paper, a mechanical probe for CMM (Coordinate Measuring Machine) with a three-axis force-sensing unit is proposed, which is capable of measuring an actual contact position without the lobbing effect and the pre-travel error. The force-sensing unit detects the external force, which is act on the stylus of CMM during the measuring process. Thus, the contact point of the stylus of CMM can be estimated ken the direction of measured force components. Based on the structural analysis of the proposed CMM probe, the transformation matrix is derived and calibrated so that it shows linear relationships between the estimated force components from the output voltages and the real input forces. And, the relationships are verified through the computer simulation. The results show that the proposed mechanical probe is very useful fur detecting the contacting force components on measuring process of CMM.

  • PDF

Design of a Six Axis Force-Torque Sensor with a Cross-Shaped Structure (십자형 구조를 가진 6축 힘.토크센서의 설계)

  • Kim, Do-Seok;Yoon, Jun-Ho;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.59-64
    • /
    • 2001
  • The necessity of six axis force-torque sensors have been increased in the field of automatic assembly, polishing and deburing using robotic manipulator recently. This paper presents a simple and compact elastic structure design of the six axis force-torque sensor with a cross-shaped structure and the expected deflection value was induced by theoretical method to design a six axis force-torque sensor and then this theoretical method was verified by comparing with the results using the Finite Element Method(FEM).

  • PDF

Development of Process of A Force Sensorless Interference fit Assembly Robot System using Sliding Perturbation Observer (슬라이딩 섭동관측기를 이용한 힘 센서리스 억지끼워맞춤 조립로봇시스템 공정개발)

  • Byun, Gyu Ho;Moon, Young Geun;Yoon, Sung Min;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.243-251
    • /
    • 2014
  • In inference fit assembly process of the industrial robot, it basically needs the force data. One of the typical methods to get the force data is attaching torque sensors on the robot arm joint or end effector. This is effective way to reduce time delay and to improve preciseness of force control, but this method has several problems. To solve that problem, this paper suggests method which measures assembly force without torque sensor by using the sliding perturbation observer(SPO) and assembly process based on SPO to assemble successfully in inference assembly