• Title/Summary/Keyword: 힘과 위치 동시 궤적 추적

Search Result 2, Processing Time 0.015 seconds

Position and Force Simultaneous Trajectory Tracking Control with a Pneumatic Cylinder Driving System (공기압 실린더를 이용한 힘과 위치 동시 궤적 추적 제어)

  • Cho, M.S.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control apparatus with pneumatic cylinder driving system is proposed. The pneumatic cylinder driving system that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic actuators. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control apparatus show that the interacting effects of two cylinders are eliminated remarkably and the proposed control apparatus tracks the given position and force trajectory accurately.

  • PDF

Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계)

  • Jang, Ji-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF