• Title/Summary/Keyword: 힌지없는 로터(hingeless rotor)

Search Result 22, Processing Time 0.02 seconds

패들형 블레이드를 장착한 힌지없는 로터 시스템의 회전시험

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.217-228
    • /
    • 2004
  • This paper presents the rotating test techniques and the results of the roating test of the small-scaled hingeless rotor system with composite paddle blades in hover and forward flight conditions. The small-scaled rotor system was designed using froude-scaled properties of full scale rotor system. Metal flexures and composite flexures were made as hub flexures by the same dynamic properties of rotor system. The rotating tests of hingeless rotor system installed in GSRTS at KARI were carried out to get lead-lag damping ratios and aerodynamic loads of the hingeless rotor system. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. 6-components balance was installed between hub and main shaft and straingauges on blades were instrumented for the measurements of aerodynamic loads of rotor system. Tests were performed on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively.

  • PDF

구속 감쇠 기법을 이용한 로터시스템 구조 감쇠 증대

  • Kim, Do-Hyung;Ko, Eun-Hee;Song, Keun-Woong;Kim, Seung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • The aeroelastic stability enhancement of composite hingeless rotor system through the structural damping increase has been investigated. In order to increase structural damping of the rotor system, constrained layer damping (CLD) treatment is applied to the composite flexures. Modal analysis of composite flexures with attached viscoelastic and constraining layers are performed using MSC/NASTRAN, and the effectiveness of CLD treatments are validated through modal test. The composite flexures with CLD are applied to a hingeless rotor system. The rotor system is tested in hovering condition and it is shown that in-plane damping is increased by means of CLD treatments.

  • PDF

A Development of Small-scaled Composite Blade for the Hingeless Rotor System of Helicopter (헬리콥터 힌지없는 로터 시스템용 축소 복합재료 블레이드 개발)

  • Kim, Deog-Kwan;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.206-209
    • /
    • 2001
  • This paper contains the development procedure of small-scaled composite rotor blade for helicopter hingeless rotor system. Composite blade design is conducted by using CORDAS program developed by KARI and dynamic analysis is conducted by using Flightlab which is commercial software for helicopter analysis. Also the optimizing procedure of iterative design was described. The designed composite blades were manufactured after establishing the effective curing method. Through this research, the experiences of composite rotor blade development were accumulated and will be applied to the related research field.

  • PDF

Damping Enhancement of Hingeless Rotor System Using Viscoelastic Material (점탄성 재료를 이용한 무힌지 로터 감쇠 증대)

  • Kim, Do-Hyung;Ko, Eun-Hee;Song, Keun-Woong;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.637-640
    • /
    • 2004
  • Structural damping enhancement of composite flexures and aeroelastic stability of a hingeless rotor system are investigated. Constrained layer damping (CLD) treatments are applied in order to increase structural damping of flexures. Material damping property of viscoelastic layer is modelled as complex modulus. Modal analysis of composite flexures with attached viscoelastic layers and constraining layers are performed using MSC/NASTRAN and the effects of CLD treatments are verified with the modal test results. The composite flexures with CLD are applied to a 4-bladed, 2-meter diameter, Froude-scaled, soft-in-plane hingeless rotor system. The aeroelastic stability is tested at hovering condition and the effects of CLD are investigated. It is shown that the CLD treatment effectively enhance the aeroelastic stability at hover.

  • PDF

Effects of Composite Couplings on Hub Loads of Hingeless Rotor Blade (무힌지 로터 블레이드의 허브하중에 대한 복합재료 연성거동 연구)

  • Lee, Ju-Young;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.29-36
    • /
    • 2004
  • In this work, the effect of composite couplings on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor blade is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear, torsional warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade response and hub loads are calculated using a finite element formulation in space and time. The aerodynamic forces acting on the blade are calculated by quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap $({\delta}3)$ or $pitch-lag({\alpha}1)$ coupling. It is found that the elastic couplings have a substantial effect on the behavior of $N_b/rev$ hub loads. Nearly 10 to 40% of hub loads is reduced by appropriately tailoring the fiber orientation angles in the laminae of the composite blade.

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

헬리콥터 복합재료 힌지없는 허브 부품 및 패들형 블레이드 설계/해석

  • Kim, Deog-Kwan;Hong, Dan-Bi;Lee, Myeong-Kyu;Joo, Gene
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.33-44
    • /
    • 2003
  • This paper describes the design and analysis technology of composite flexure and composite paddle-type blade which are all key technologies on hingeless rotor system. Through replacing the existing metal or engineering plastic flexure part with composite part, Several required structural analysis were accomplished, which are static analysis by using NASTRAN and dynamic analysis by using FLIGHTLAB. The dynamic characteristics of composite hingeless hub attached with paddle-type blade was also investigated. Further more, small-scaled paddle-type blade was designed using froude scaled properties of existing full size blade. Through this design procedure of composite paddle-type blade, the structural design method was achieved. These results will be applied to accomplishing current project named as "the development of next-generation helicopter rotor system."

  • PDF

Viscoelastic Damping Treatment Analysis and Aeroelasticity for Vibration Reductions of a Hingeless Composite Helicopter Rotor System (무힌지 복합재 헬리콥터 로터 시스템의 진동 저감을 위한 점탄성 감쇠처리 해석 및 공탄성 연구)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.6-14
    • /
    • 2007
  • In this research, vibration reduction and aeroelastic stability of a composite hingeless rotor hub flexure with viscoelastic constrained layer damping treatment(CLDT) were investigated. The composite flexures with viscoelastic CLDT were applied to hingeless rotor system to improve the in-plane stability of the lead-lag motion causing resonance. The modal test was performed and dynamic properties(natural frequency and loss factor) were acquired. Also, complex eigenvalue analysis(SOLlO7) in the NASTRAN structural analysis module was performed and compared with results of the modal test. To insure aeroelastic stability, damping ratio analyses of the hingeless rotor system with CLDT were accomplished at hovering condition due to collective pitch angle changes. Satisfactory results of increasing structural damping and stability were obtained.

  • PDF

A Structural Design and Manufacture of Paddle type Small-scaled Composite Blade for Hingeless Rotor System of Helicopter (헬리콥터 힌지없는 로터 시스템용 패들형 축소 복합재료 블레이드 구조 설계 및 제작)

  • Kim, Deog-Kwan;Hong, Dan-Bi;Lee, Myung-Kyu;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.220-223
    • /
    • 2002
  • This paper introduces the development procedure of paddle type small-scaled composite rotor blade for helicopter hingeless rotor system. Paddle type composite blade design was done by using CORDAS program developed by KARI and dynamic analysis for hingeless hub with blade is done by using FLIGHTLAB which is commercial software for helicopter comprehensive analysis. The procedure to manufacture complicated shape of paddle type blade tip was developed and composite blades were manufactured after establishing the effective curing method. Through this research, the development technology of composite rotor blade with complex aerodynamic shape were accumulated and these will be applied to the related research field, for example, full size composite blade development, etc.

  • PDF

Dynamic Characteristic Study of Hingeless Blade Stiffness Reinforcement for Bearingless Rotor Whirl Tower Test (무베어링 로터 훨타워 시험을 위한 무힌지 블레이드 강성보강에 따른 동특성 연구)

  • Kim, Taejoo;Yun, Chulyong;Kee, Youngjoong;Kim, Seung-Ho;Jung, Sungnam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • Whirl tower test is conducted basically during helicopter rotor system development process. And for whirl tower test of rotor hub system, new design blade or existing blade which is remodeled for new rotor hub system is used. Because of simple shape and efficient aerodynamic characteristic, BO-105 helicopter blade is used for helicopter rotor hub development project widely. Originally BO-105 blade is used for hingeless hub system and blade root is used to flexure. So flap stiffness and lag stiffness at blade root area is relatively low compare with airfoil area. So, in order to apply the BO-105 blade to bearingless hub, blade root area have to be reinforced. And in this process, blade root area's section property is changed. In this paper, we suggest reinforcement method of BO-105 blade root area and study dynamic characteristic of bearingless rotor system with reinforcement BO-105 blade.