• Title/Summary/Keyword: 히트파이프 성능 예측 프로그램

Search Result 2, Processing Time 0.021 seconds

An Experimental Study on Heat Transport Performance of Dual Bore Heat Pipe (Dual Bore 히트파이프의 열전달 특성에 관한 실험적 연구)

  • Yeom, H.Y.;Chung, S.W.;Suh, J.S.;Yoo, J.B.
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.333-338
    • /
    • 2006
  • This study is a research on Dual Bore heat pipe to investigate the ability of heat transport ability, heat resistance and difference of heat transport ability according to the type of heat pipes. As the result of this research, we got several conclusions. Each pipe of Dual Bore in one section has a similar heat transfer capability. In the range between $-20^{\circ}C$ and $60^{\circ}C$ the heat transfer capability is double than single bore which was analyzed by menas of GAP program. Heat resistance is below $0.05^{\circ}C$/W at every point, and it tells aluminum-ammonia heat pipes are proper for satellite.

  • PDF

Improving Hit Ratio and Hybrid Branch Prediction Performance with Victim BTB (Victim BTB를 활용한 히트율 개선과 효율적인 통합 분기 예측)

  • Joo, Young-Sang;Cho, Kyung-San
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2676-2685
    • /
    • 1998
  • In order to improve the branch prediction accuracy and to reduce the BTB miss rate, this paper proposes a two-level BTB structure that adds small-sized victim BTB to the convetional BTB. With small cost, two-level BTB can reduce the BTB miss rate as well as improve the prediction accuracy of the hybrid branch prediction strategy which combines dynamic prediction and static prediction. Through the trace-driven simulation of four bechmark programs, the performance improvement by the proposed two-level BTB structure is analysed and validated. Our proposed BTB structure can improve the BTB miss rate by 26.5% and the misprediction rate by 26.75%

  • PDF