• 제목/요약/키워드: 히스토그램인덱싱

검색결과 29건 처리시간 0.026초

축구 비디오 하이라이트 생성 (Creating highlights of Soccer video)

  • 전근환;신성윤;이양원;류근호
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.411-418
    • /
    • 2001
  • 비디오 하이라이트(highlights)는 원래의 비디오 보다 짧고 많은 양의 의미를 갖는다. 기존의 파노라마 형태의 추상화 기법은 여러 프레임을 하나의 프레임으로 모자이크하는 형태이었고, TV 드라마 하이라이트 방법은 카메라의 이동이나 특수효과에 의존하기 때문에 스포츠 비디오에 적용은 부적합하다. 이 논문에서는 축구 비디오를 대상으로 시각정보와 자막을 이용하는 새로운 비디오 하이라이트 생성 방법과 이벤트 기반 비디오 인덱싱 방법을 제안한다. 하이라이트 생성은 하이라이트 생성 규칙에 따라 자막에 의해 추출된 TIT을 중심으로 시각정보에 의해 추출된 샷을 합성하여 생성하였고, 인덱싱은 자막으로 추출된 샷은 주요소로, 시각정보에 의해 추출된 샷은 부가적 요소로 구성하였다. 실험에서는 샷 추출기법 중 대표적인 컬러히스토그램과 $\chi$$^2$히스토그램과의 성능을 비교하여 제안한 하이라이트 기법이 다른 방식보다 우수함을 증명하였다.

  • PDF

내용기반 초음파 영상 검색 시스템 (Content-Based Ultrasound Image Retrieval System)

  • 곽동민;김범수;윤옥경;김현순;김남철;고광식;박길흠
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2001
  • 본 논문에서는 초음파 의료영상 데이터베이스로부터 원하는 영상들을 찾아내기 위한 내용기반 영상 검색기법을 제안한다. 전체 영상 검색 시스템은 공간영역의 히스토그램과 웨이브릿 변환영역에서 부대역의 통계적 특성벡터를 이용한 2단계 검색 알고리즘을 사용하였다. 또한 히스토그램의 인덱싱 기법으로 Legendre 모멘트를 이용해서 데이터베이스에 저장되는 인덱스의 크기를 최소화시켜서 기존의 히스토그램을 이용한 검색방법 비해서 검색속도를 높이면서 검색결과를 개선시켰다.

  • PDF

축구 비디오 인덱싱을 위한 장면 전환 검출과 시각 정보 분석 (Scene Change Detection and Visual Information Analysis for Soccer Video Indexing)

  • 신성윤;강오형;문경;이양원
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.290-294
    • /
    • 2001
  • 비디오 데이터를 인덱싱 하기 위해서는 우선적으로 장면 전환을 검출하여 키 프레임을 추출하고 추출된 키 프레임을 바탕으로 인덱싱 작업을 수행한다. 본 논문에서는 장면 전환을 검출하기 위하여 컬러 히스토그램과 $\chi$$^2$히스토그램을 합성한 방법을 이용하여 키 프레임을 추출하고, 축구 비디오가 갖는 특성을 이용하여 샷 사이의 흐름을 파악하여 시각 정보를 분석하며, 이를 바탕으로 축구 비디오를 다양한 방법으로 인덱싱하는 방법을 제시한다.

  • PDF

다중 분할 칼라 히스토그램 기법을 이용한 멀티미디어 데이터베이스 시스템 (A Multimedia Database System using Method of Multi-Partition Color Histogram)

  • 이근왕;오택환;조경모
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.421-425
    • /
    • 2006
  • 본 논문에서는 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의를 분석하고 질의에 의해 추출된 키 프레임의 이미지를 사용자가 선택함으로써 인덱싱 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 특징기반 검색의 질의 이미지가 되고 인덱싱 에이전트는 제안하는 다중 분할 칼라 히스토그램 기법을 통해 질의 이미지와 데이터베이스의 키 프레임들을 비교한 후 가장 유사한 키 프레임 이미지를 검색하여 사용자에게 디스플레이한다. 제안하여 구현된 시스템은 현저히 향상된 성능을 보였다.

  • PDF

히스토그램 특징과 영역기반의 에지 특징에 의한 장면 전환 검출에 관한 연구 (A study on Scene-Change Detection Using Histogram Characteristic and Region-based Edge Characteristic)

  • 이득재;최기호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.110-113
    • /
    • 2002
  • 통신과 멀티미디어 기술의 발전으로 대용량의 멀티미디어 자료에 대한 효율적인 검색 방법이 대두되고 있다. 본 논문에서 다루고자 하는 동영상 장면전환 검출 연구는 멀티미디어 데이터베이스의 내용기반 비디오 정보검색 및 비디오 데이터 인덱싱 구현의 기반이 되는 첫번째 단계의 핵심적인 분야에 속한다. 비디오 데이터를 내용기반으로 처리 하기 위해서는 우선 비디오데이터를 연속성에 의한 유사 영역으로 분할하여야 한다. 동영상을 분할하기 위한 방법으로 비디오의 불연속점을 찾아내는 장면전환 검출이 널리 사용되어 이에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 기존의 방법인 히스토그램 방식과 에지검출 방식의 장단점을 비교하고 두 알고리즘의 장점을 혼합한 방식을 제안하였다. 영상을 1차로 히스토그램의 피크값과 계곡특징값을 이용하고 2차로 에지검출 방식으로 두 단계로 나누어 처리하여 속도향상과 정확도를 높이고자 하는 방법을 제안하였다. 그리고 실험을 통하여 기존의 방법들과의 비교 분석을 통하여 성능평가를 하고자 한다.

  • PDF

자동 주석 갱신 및 다중 분할 칼라 히스토그램 기법을 이용한 멀티미디에 데이터베이스 시스템 (A Multimedia Database System using Method of Automatic Annotation Update and Multi-Partition Color Histogram)

  • 안재명;오해석
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.701-708
    • /
    • 2004
  • 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의를 분석하고 질의에 의해 추출된 키 프레임의 이미지를 사용자가 선택함으로써 인덱싱 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 특징기반 검색의 질의 이미지가 되고 인덱싱 에이전트는 제안하는 다중 분할 칼라 히스토그램 기법을 통해 질의 이미지와 데이터베이스의 키 프레임들을 비교한 후 가장 유사한 키 프레임 이미지를 검색하여 사용자에게 디스플레이 한다. 제안하여 구현된 시스템은 현저히 향상된 성능을 보였다.

영역 특징벡터를 이용한 내용기반 영상검색 (Content-Based Image Retrieval using Region Feature Vector)

  • 김동우;송영준;김영길;안재형
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.47-52
    • /
    • 2006
  • 본 논문은 기존의 컬러 히스토그램 방법들의 단점을 극복하고자 영역 특징백터를 이용한 영상 검색 방법을 제안한다. 컬러 히스토그램 검색방법들은 양자화 오류 등의 이유로 정확성이 떨어지는 단점이 있다 이를 해결하기 위해 제안 방법은 색상 정보를 HSY 공간으로 변환하여 순수 색상 정보인 hue 성분만을 양자화하여 히스토그램을 구하고, 이를 명암, 이동, 회전등에 강인한 검색 특징으로 사용한다. 또한 컬러 히스토그램 방법들의 가장 큰 문제점인 공간 정보가 부족한 것은 영상을 16개 영역으로 나눠서 각 영역간의 비교를 통해 해결한다. 그리고 색상 검색에 추가적으로 모양 특징인 에지와 질감 특징인 DCT 변환의 DC를 이용하여 검색의 정확도를 높인다 1,000개의 컬러 영상을 사용해 실험한 결과 기존의 방법들 보다 좋은 정확성을 보인다.

얼굴 영역 추출에 의한 장면 전환 검출에 관한 연구 (A Study on Scene Change Detection Using Facial Regions Extraction)

  • 최경애;최기호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(하)
    • /
    • pp.609-613
    • /
    • 2002
  • 본 논문에서는 효과적인 비디오 인덱싱을 위해 얼굴 영역 추출을 통한 장면 전환 검출 방법을 제시하였다. 히스토그램과 사람의 피부색 검출을 통해 사람의 얼굴을 포함하는 후보 프레임을 찾고, 얼굴 영역과 특징 추출을 통해 사람을 포함하는 키 프레임을 검출하여 비디오의 장면 전환 프레임을 검출하고, 실험을 통해 제안된 방법의 우수성을 보였다.

  • PDF

효율적인 멀티미디어 검색을 위한 MPEG-7 시각 정보 기술자의 인덱싱 및 결합 알고리즘 (An Indexing and Integration Schemes of MPEG-7 Visual Descriptors for Efficient Multimedia Retrievals)

  • 송치일;김재영;정진국;낭종호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.148-150
    • /
    • 2004
  • 최근 멀티미디어 정보를 기술하기 위한 표준인 MPEG-7이 제안되어 이미지/동영상 검색 시스템과 같은 응용분야에서 사용되기 시작하였다. 그러나 MPEG-7 시각 정보 기술자들은 대부분 고차원으로 표현되고 기술자들이 가지는 각 속성들의 성질이 서로 동일하지 않기 때문에 기존의 인덱싱 방법으로는 효율적인 검색을 할 수 없다. 본 논문에서는 MPEG-7 시각 정보 기술자중에서 많이 사용되는 Dominant Color 기술자와 Contour Shape 기술자에 대한 새로운 인덱싱 알고리즘을 제안한다. Dominant Color 기술자에서 사용되는 비 교 연산 식 은 가우스 혼합 모델에 기초하고 있기 때문에, 기술자의 각 속성들을 하냐의 칼라 히스토그램 형태로 변형시켜서 인덱스로 사용한다. Contour Shape기술자는 2 단계 형태의 알고리즘을 사용한다. 각 단계는 글로벌 파라미터 속성과 비트맵 인덱스를 사용한 인덱싱이 적용된다. 제안된 인덱싱 방법을 사용했을 때 Dominant Color의 경우 90%의 정확도에 120배 이상의 속도 향상을 나타냈고, Contour Shape의 경우 82%의 정확도에 3배 이상의 속도 향상을 나타냈다.

  • PDF

동영상에서 MGH을 이용한 실시간 다수 동작 인식 (Real-Time Multiple Action Recognition on Video using Motion Gradient Histogram)

  • 김태형;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.325-327
    • /
    • 2006
  • 본 논문은 모션 그래디언트 히스토그램(Motion Gradient Histogram : 이하 'MGH')을 적용하여 동영상에서 나타나는 다수 객체들의 동작 검출 및 인식을 실시간으로 구현하는 방법을 제안한다. 인식하고자 하는 대상에 대한 기본적인 템플릿 동영상들의 MGH와 일정 프레임 간격마다 동영상의 MGH를 비교하여 검출 및 인식이 이루어진다. 동시에 다수의 동작이 있는 경우 동작이 발생하는 영역을 모션 에너지 영상(Motion Energy Image : MEI) 기법으로 추출하여 해당 영역별 MGH를 구함으로써 다수 동작을 인식할 수 있도록 한다.

  • PDF