• Title/Summary/Keyword: 히스토그램매칭

Search Result 91, Processing Time 0.031 seconds

Face Authentication using Multi-radius LBP Matching of Individual Major Blocks in Mobile Environment (개인별 주요 블록의 다중 반경 LBP 매칭을 이용한 모바일 환경에서의 얼굴인증)

  • Lee, Jeong-Sub;Ahn, Hee-Seok;Keum, Ji-Soo;Kim, Tai-Hyung;Lee, Seung-Hyung;Lee, Hyon-Soo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.515-524
    • /
    • 2013
  • In this paper, we propose a novel face authentication method based on LBP matching of individual major blocks in mobile environment. In order to construct individual major blocks from photos, we find the blocks that have the highest similarity and use different numbers of blocks depending on the probability distribution by applying threshold. And, we use multi-radius LBP histograms in the determination of individual major blocks to improve performance of generic LBP histogram based approach. By using the multi-radius LBP histograms in face authentication, we can successfully reduce the false acceptance rate compare to the previous methods. Also, we can see that the proposed method shows low error rate about 7.72% compare to the pervious method in spite of use small number of blocks about 44.59% only.

A Fast Way for Alignment Marker Detection and Position Calibration (Alignment Marker 고속 인식 및 위치 보정 방법)

  • Moon, Chang Bae;Kim, HyunSoo;Kim, HyunYong;Lee, Dongwon;Kim, Tae-Hoon;Chung, Hae;Kim, Byeong Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • The core of the machine vision that is frequently used at the pre/post-production stages is a marker alignment technology. In this paper, a method to detect the angle and position of a product at high speed by use of a unique pattern present in the marker stamped on the product, and calibrate them is proposed. In the proposed method, to determine the angle and position of a marker, the candidates of the marker are extracted by using a variation of the integral histogram, and then clustering is applied to reduce the candidates. The experimental results revealed about 5s 719ms improvement in processing time and better precision in detecting the rotation angle of a product.

Histogram Matching Algorithm for Content-Based Dnage Retrieval (내용기반 영상검색을 위한 히스토그램 매칭 알고리즘)

  • You, Kang-Soo;Yoo, Gi-Hyoung;Kwak, Hoon-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.45-52
    • /
    • 2008
  • In this paper, we describe the Perceptually Weighted Histogram(PWH) and the Gaussian Weighted Histogram Intersection(GWHI) algorithms. These algorithms are able to provide positive results in image retrieval. But these histogram methods alter the histogram of an image by using particular lighting conditions. Even two pictures with little differences in lighting are not easily matched. Therefore, we propose that the Histogram Matching Algorithm(HMA) is able to overcome the problem of an image being changed by the intensity or color in the image retrieval. The proposed algorithm is insensitive to changes in the lighting. From the experiment results, the proposed algorithm can achieve up to 32% and up to 30% more recall than the PWH and GWHI algorithms, respectively. Also, it can achieve up to 38% and up to 34% more precision than PWH and GWHI, respectively Therefore, with our experiments, we are able to show that the proposed algorithm shows limited variation to changes in lighting.

Music Identification Using Pitch Histogram and MFCC-VQ Dynamic Pattern (피치 히스토그램과 MFCC-VQ 동적 패턴을 사용한 음악 검색)

  • Park Chuleui;Park Mansoo;Kim Sungtak;Kim Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.178-185
    • /
    • 2005
  • This paper presents a new music identification method using probabilistic and dynamic characteristics of melody. The propo3ed method uses pitch and MFCC parameters as feature vectors for the characteristics of music notes and represents melody pattern by pitch histogram and temporal sequence of codeword indices. We also propose a new pattern matching method for the hybrid method. We have tested the proposed algorithm in small (drama OST) and broad (1.005 popular songs) search spaces. The experimental results on search areas of OST and 1,005 popular songs showed better performance of the proposed method over conventional methods. We achieved the performance improvement of average $9.9\%$ and $10.2\%$ in error reduction rate on each search area.

A system design for textile defect detection using pattern matching (패턴매칭을 이용한 섬유결함 검출시스템의 설계)

  • Kang, Hyunsoo;Kim, Jongjun;Song, Nagun
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.474-477
    • /
    • 2010
  • 본 논문에서는 패턴인식을 이용한 의류의 결함을 자동으로 탐색하는 시스템을 설계하였다. 이는 히스토그램을 기반으로 하여 영상의 특징을 추출하고 템플릿 매칭을 이용해서 패턴을 추적하도록 하였스며, 또한, SSIM(Structural Similarity) Index를 통해 추적된 패턴과 원 패턴의 유사도를 HVS(Human Vision System)을 기준으로 하여 결함을 판별할수 있도록 하였다.

An Improved LBP-based Facial Expression Recognition through Optimization of Block Weights (블록가중치의 최적화를 통해 개선된 LBP기반의 표정인식)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.73-79
    • /
    • 2009
  • In this paper, a method is proposed that enhances the performance of the facial expression recognition using template matching of Local Binary Pattern(LBP) histogram. In this method, the face image is segmented into blocks, and the LBP histogram is constructed to be used as the feature of the block. Block dissimilarity is calculated between a block of input image and the corresponding block of the model image. Image dissimilarity is defined as the weighted sum of the block dissimilarities. In conventional methods, the block weights are assigned by intuition. In this paper a new method is proposed that optimizes the weights from training samples. An experiment shows the recognition rate is enhanced by the proposed method.

Spatial Locality Preservation Metric for Constructing Histogram Sequences (히스토그램 시퀀스 구성을 위한 공간 지역성 보존 척도)

  • Lee, Jeonggon;Kim, Bum-Soo;Moon, Yang-Sae;Choi, Mi-Jung
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.1
    • /
    • pp.79-91
    • /
    • 2013
  • This paper proposes a systematic methodology that could be used to decide which one shows the best performance among space filling curves (SFCs) in applying lower-dimensional transformations to histogram sequences. A histogram sequence represents a time-series converted from an image by the given SFC. Due to the high-dimensionality nature, histogram sequences are very difficult to be stored and searched in their original form. To solve this problem, we generally use lower-dimensional transformations, which produce lower bounds among high dimensional sequences, but the tightness of those lower-bounds is highly affected by the types of SFC. In this paper, we attack a challenging problem of evaluating which SFC shows the better performance when we apply the lower-dimensional transformation to histogram sequences. For this, we first present a concept of spatial locality, which comes from an intuition of "if the entries are adjacent in a histogram sequence, their corresponding cells should also be adjacent in its original image." We also propose spatial locality preservation metric (slpm in short) that quantitatively evaluates spatial locality and present its formal computation method. We then evaluate five SFCs from the perspective of slpm and verify that this evaluation result concurs with the performance evaluation of lower-dimensional transformations in real image matching. Finally, we perform k-NN (k-nearest neighbors) search based on lower-dimensional transformations and validate accuracy of the proposed slpm by providing that the Hilbert-order with the highest slpm also shows the best performance in k-NN search.

Regional Projection Histogram Matching and Linear Regression based Video Stabilization for a Moving Vehicle (영역별 수직 투영 히스토그램 매칭 및 선형 회귀모델 기반의 차량 운행 영상의 안정화 기술 개발)

  • Heo, Yu-Jung;Choi, Min-Kook;Lee, Hyun-Gyu;Lee, Sang-Chul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.798-809
    • /
    • 2014
  • Video stabilization is performed to remove unexpected shaky and irregular motion from a video. It is often used as preprocessing for robust feature tracking and matching in video. Typical video stabilization algorithms are developed to compensate motion from surveillance video or outdoor recordings that are captured by a hand-help camera. However, since the vehicle video contains rapid change of motion and local features, typical video stabilization algorithms are hard to be applied as it is. In this paper, we propose a novel approach to compensate shaky and irregular motion in vehicle video using linear regression model and vertical projection histogram matching. Towards this goal, we perform vertical projection histogram matching at each sub region of an input frame, and then we generate linear regression model to extract vertical translation and rotation parameters with estimated regional vertical movement vector. Multiple binarization with sub-region analysis for generating the linear regression model is effective to typical recording environments where occur rapid change of motion and local features. We demonstrated the effectiveness of our approach on blackbox videos and showed that employing the linear regression model achieved robust estimation of motion parameters and generated stabilized video in full automatic manner.

Improving Performance of SIFT Using Color Ratio (색상비율을 이용한 SIFT 성능향상)

  • Bo Hyuck An;Jong Leul Chung;Byung-Uk Choi
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.164-167
    • /
    • 2008
  • 효과적이고 정확한 물체인식은 컴퓨터 비전 연구 분야에 있어 매우 중요한 부분이다. 조명, 카메라 회전등의 외부환경의 변화에 의해 서로 다르게 획득되는 영상에 대해서도 강인하도록 동일한 특징점을 추출하고 매칭할 수 있는 방법으로 SIFT(Scale Invariant Feature Transform) 매칭이 많이 사용되어 왔다. 그러나 기존의 SIFT기술자는 특징점 주변의 그레이만을 이용하여 기술하기 때문에 물체의 그레이정보가 유사하며 색상이 다르더라도 그레이정보만 유사할 경우에도 매칭되는 단점이 있다. 이러한 문제점을 개선하기 위하여 본 연구에서는 기본영역가 확장영역의 색상 히스토그램에 기반 한 기술자를 추가하여 오매칭에 대한 인식 성능을 향상 시키는 방법을 제안한다.

People Counting based on Color Histogram (컬러 매칭을 이용한 사람 계수 측정)

  • Yeon, Je-Weon;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.140-141
    • /
    • 2016
  • 기존의 사람 계수 측정 시스템은 적외선 빔이나 열 감지 영상 장치를 통해 측정하였다. 하지만 이와 같은 방법으로 측정하면 객체가 들어가거나 나가는 정보는 제공하지 않는다. 이에 본 논문은 고정된 카메라를 이용하여 각 사람의 피부색과 옷차림 등의 RGB 정보를 이용한 사람 계수 측정 기법을 제안한다. RGB카메라 영상을 통하여 객체의 RGB 히스토그램을 얻은 후 각 객체에 대해 Bhattacharyya metric을 통한 histogram similarity을 계산하여 객체 추적 및 분류를 통해 사람 계수 측정을 한다. 제안된 시스템은 C/C++을 기반으로 구현하여, 사람 계수 측정 성능을 평가하였다.

  • PDF