• Title/Summary/Keyword: 흰가루병

Search Result 278, Processing Time 0.024 seconds

Antagonistic Assay of Bacillus spp. for Eco-friendly Biological Control of Melon Powdery Mildew (멜론 흰가루병 친환경 생물적 방제를 위한 Bacillus속 균의 길항력 평가)

  • Park, Myung Soo;Lee, Moon Haeng;Lee, Eun Mo;Yun, Hae-Kuen;Kim, Sung Eok;Jeon, Nak Beom
    • The Korean Journal of Mycology
    • /
    • v.46 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • Melon powdery mildew, caused by Podosphaera fusca, is one of the serious diseases of melon plant in Korea. In this study, we evaluated the effect of selected antagonistic bacteria on the inhibition of mycelial growth of various plant pathogens, and control of melon powdery mildew. Based on the 16S rDNA and gyrA gene sequences, the selected antagonistic bacteria, M09, M70, and M99-1, were identified as Bacillus velezensis. These bacteria not only inhibited the mycelial growth of 47~69% in various plant pathogens, but also significantly reduced the incidence of powdery mildew. The three strains selected in this study could be used as potential biological control agents for various plant diseases as well as melon powdery mildew.

Control of Powdery Mildew on Cucumber by Using Oleic Acid in the Greenhouse (올레산을 이용한 오이의 흰가루병 방제)

  • Lee, Moon-Haeng;Kim, Young-Shik
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.695-703
    • /
    • 2014
  • We experimented with the effect of oleic acid and its appropriate concentration to prevent powdery mildew eco-friendly in a cucumber greenhouse cultivation. 'Baekbongdadaki' (Nongwoo Bio. co. Korea) was treated in the plastic greenhouse at Sangmyung University. We treated four levels of concentration of oleic acid, which were 0, 2000, 4000, 6000, and 8000 ppm. There were investigated diseased severity, diseased leaf area, control value, and pesticide injury. The degree of control values by oleic acid treatments was investigated at 3 days after treatment. The recurrence of powdery mildew was checked for 55 days. The day and night temperature in the greenhouse were controlled to 23 and $15^{\circ}C$ respectively. The humidity inside the greenhouse was not controlled to prevent outbreak of the disease. From the experimental results, oleic acid was very efficient to control powdery mildew. 2000 ppm of oleic acid was shown to be the most control efficiency without any pesticide injury. The recommended method to treat it was to spray three times every 3 weeks.

Oidium oxalidis, a Powdery Mildew Fungus New to Korea (한국산(韓國産) 미기록(未記錄) 흰가루병균(病菌) Oidium oxalidis에 대하여)

  • Shin, Hyeon-Dong;La, Yong-Joon
    • The Korean Journal of Mycology
    • /
    • v.11 no.1
    • /
    • pp.33-34
    • /
    • 1983
  • 흰가루병(病)에 감염(感染)된 괭이밥(Oxalis corniculata L.)을 1982년(年) 6월(月) 수원(水原)에서 다수(多數) 채집(採集)하였다. 병원균(病原菌)의 형태적(形態的) 특징(特徵)을 검경(檢鏡)한 결과(結果), 한국산(韓國産) 미기록(未記錄) 흰가루병균(病菌)인 Oidium oxalidis McAlp.로 동정(同定)되었다. 이병식물(罹病植物)은 10월말경(月末頃) 거의 고사(枯死)하였으며, 이 병원균(病原菌)의 완전세대(完全世代)는 관찰(觀察)되지 않았다.

  • PDF

Effect of a Bioactive Substance Extracted from Rheum undulatum on Control of Cucumber Powdery Mildew (대황에서 추출한 생리 활성 물질의 흰가루병 방제 효과)

  • 백수봉;경석헌;김종진;오연선
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.85-90
    • /
    • 1996
  • 대황 추출물(RK)과 화학약품 1, 8-dihydroxy anthraquinone(AK)을 제제화하여 오이 흰가루병에 대한 약효, 약해 및 어독성을 조사하였다. 제제화한 RK와 AK 약제를 하우스에서 500배, 1000배 희석농도로 처리했을 경우 오이 흰가루병에 대하여 100%의 방제효과를 나타냈고, pot에서 2,000배, 3,000배, 5,000배 희석농도로 처리했을 때 모두 75% 이상의 방제효과를 나타냈다. 또 노지에서 4,000배, 5,000배 희석농도로 처리해도 75.3% 이상의 방제효과를 나타냈다. RK 약제는 250배 희석농도에서 오이에 약해가 없었으나 AK 약제는 250배 희석농도에서 약해가 있었다. 어독성은 두 약제 모두 반수치사농도(TLm)가 2ppm 이상으로 독성은 낮은 것으로 판정되었다.

  • PDF

Study on the Inheritance of Powdery Mildew Resistance in Common Wheat (밀의 흰가루병 저항성의 유전에 관한 연구)

  • Young-Am Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.4
    • /
    • pp.35-37
    • /
    • 1979
  • To investigate the genetic system in resistance to powdery mildew winter wheat cultivar Diplomat which has stable field resistance was crossed with high yielding susceptible winter type Caribo and Hayman's generation mean analysis technique was employed. Mildewing rate on flag-leaf at both heading-flowering and ripe stages were recorded according to lame's quantitative scale. The result indicated that additive gene effect was more important and significant role in the inheritance of resistance while dominant gene effect was minimum, and digenic interations were absent. Narrow sense heritability of resistance at ripe stage was higher than that of heading-flowering stage.

  • PDF

Control effect of the Mixture of Bacillus amyloliquefaciens M27 and Plant Extract against Cucumber Powdery Mildew (Bacillus amyloliquefaciens M27과 식물천연물 혼합제에 의한 오이 흰가루병의 방제 효과)

  • Lee, Sang Yeob;Weon, Hang Yeon;Kim, Jeong Jun;Han, Ji Hee;Kim, Wan Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.435-439
    • /
    • 2013
  • Bacillus amyloliquefaciens M27 was selected as a control agent for the biological control of cucumber powdery mildew. The new mixture of B.amyloliquefaciens M27 and plant (Eucalytus) extract was developed to improve the control activity of B.amyloliquefaciens M27 against cucumber powdery mildew. The mixed formulation showed the high preventive and curative control effect against cucumber powdery mildew when it was diluted at 500 times and foliar-sprayed. Its control effect was higher in preventive spraying than curative spraying. When 500-fold diluted solution of the formulation was sprayed preventively four times at five-day intervals, three times at seven-day intervals and twice at ten-day intervals, the diseased leaf area was shown to be 4.4%, 8.0%, 27.9%, respectively; Whereas the diseased leaf area in the control plot was 45.4%. When the 500-fold diluted formulation was sprayed curatively four times at five-day intervals, three times at seven-day intervals and twice at ten-day intervals after occurred cucumber powdery mildew, the diseases leaf area was 11.5%, 25.2%, 51.8%, respectively; whereas in the control plot, the diseases leaf area was 64.3%. When the 500-fold diluted formulation was treated four times at five-day intervals in the plastic house, its control effect was higher than that treated three times at seven-day intervals and twice at ten-day intervals. As the results, the mixed formulation of B.amyloliquefaciens M27 and plant extract could be a promising candidate of bio-fungicides for the environment-friendly control of powdery mildew of cucumber.

Expression Profiling of MLO Family Genes under Podosphaera xanthii Infection and Exogenous Application of Phytohormones in Cucumis melo L. (멜론 흰가루병균 및 식물 호르몬 처리하에서 MLO 유전자군의 발현검정)

  • Howlader, Jewel;Kim, Hoy-Taek;Park, Jong-In;Ahmed, Nasar Uddin;Robin, Arif Hasan Khan;Jung, Hee-Jeong;Nou, III-Sup
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.419-430
    • /
    • 2016
  • Powdery mildew disease caused by Podosphaera xanthii is a major concern for Cucumis melo production worldwide. Knowledge on genetic behavior of the related genes and their modulating phytohormones often offer the most efficient approach to develop resistance against different diseases. Mildew Resistance Locus O (MLO) genes encode proteins with seven transmembrane domains that have significant function in plant resistance to powdery mildew fungus. We collected 14 MLO genes from ‘Melonomics’ database. Multiple sequence analysis of MLO proteins revealed the existence of both evolutionary conserved cysteine and proline residues. Moreover, natural genetic variation in conserved amino acids and their replacement by other amino acids are also observed. Real-time quantitative PCR expression analysis was conducted for the leaf samples of P. xanthii infected and phyto-hormones (methyl jasmonate and salicylic acid) treated plants in melon ‘SCNU1154’ line. Upon P. xanthii infection using 7 different races, the melon line showed variable disease reactions with respect to spread of infection symptoms and disease severity. Three out of 14 CmMLO genes were up-regulated and 7 were down-regulated in leaf samples in response to all races. The up- or down-regulation of the other 4 CmMLO genes was race-specific. The expression of 14 CmMLO genes under methyl jasmonate and salicylic acid application was also variable. Eleven CmMLO genes were up-regulated under salicylic acid treatment, and 7 were up-regulated under methyl jasmonate treatments in C. melo L. Taken together, these stress-responsive CmMLO genes might be useful resources for the development of powdery mildew disease resistant C. melo L.

Reducing Phytotoxic by Adjusted pH and Control effect of Loess-Sulfur Complex as Organic Farming Material against Powdery Mildew in Tomato (유기농자재인 황토유황합제의 약해 경감 및 흰가루병 방제효과)

  • Shim, Chang-Ki;Kim, Min-Jeong;Kim, Yong-Ki;Hong, Sung-Jun;Kim, Suk-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • The soluble loess-sulfur mixture allowed standing to remove insoluble component materials for five weeks after manufacturing. We decreased the pH level of soluble loess-sulfur mixture at pH 1.0 modified with decreasing 25% sodium hydroxide than original content. The pH ranges of soluble loess-sulfur mixture solutions were adjusted to pH 5.0-pH 11.0 (pH 1 unit) with brown rice vinegar (pH 2.8). The pH of original loess-sulfur mixture was about pH 13 and damaged the foliar parts and young leaves of tomato after twice application. These stock solutions can be diluted 500:1 with tap water to make a 0.05% working solution and were sprayed two times with 7 days interval to the leaf and stem of tomato, which were spontaneously infected with E. cichoracearum. Control efficacy of powdery mildew ranged from 85% to 90% at 7 days after first application. After second application, each loess-sulfur mixture solutions adjusted pH level significantly suppressed the powdery mildew disease in tomato. Consequently, loess-sulfur complex adjusted pH level with brown rice vinegar was suggested to be low in acute toxicity at all different pH values and suggested to use an agent for control of tomato powdery mildew in organic farming.

Screening of Fungicide Resistance of Cucumber Powdery Mildew Pathogen, Sphaerotheca fusca in Gyeonggi Province (경기 지역 오이 흰가루병균(Sphaerotheca fusca)의 살균제 저항성 검정)

  • Kim, Jin-Young;Hong, Sun-Sung;Lim, Jae-Wook;Park, Kyeong-Yeol;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2008
  • Fungicide resistance of cucumber powdery mildew was screened among the pathogens isolated from diseased plants in main cucumber productuion areas in Gyeonggi Province. Each fungicide from different activity group for the control of powdery mildew were sprayed on cucumber leaves according to application concentration. Each conidia mixed with sterilized water isolated of pathogens were transferred on the cucumber leaf disks treated with each fungicide. At 7 to 9 days after inoculation of pathogen, disease severity was recorded under the microscope. Most of pathogen isolates showed moderate resistance to difenoconazole belonged to DMI group fungicide while some isolates from Osan were resistant even $300{\mu}g/ml$. Isolates from Pyeongtaek, Osan and Yongin area also showed moderate resistance to fenarimol while one isolate showed resistant to fenarimol even $300{\mu}g/ml$. Most of isolates from Pyeongtaek, Osan and Yongin showed highly resistant to azoxystrobin belonged to strobilurin group fungicide. Standard sensitive isolates the minimum inhibition concentration(MIC) value for azoxystrobin showed $200{\mu}g/ml$ while resistance isolates showed above $2000{\mu}g/ml$. Resistant isloates also showed cross resistance among strobilurin group fungicides and low control efficacy in the field test. These results suggest that treatment of strobilurin fungicides should be reduced for the control of powdery mildew.