• Title/Summary/Keyword: 희토류 원소

Search Result 348, Processing Time 0.024 seconds

Characteristics and Stratigraphic Implications of Granitic Rock Fragments in the Pyroclastic Rocks, SE Jinhae, Korea (진해시 남동부 화성쇄설암 내 화강암편의 특징과 층서적 의미)

  • Cho, Hyeong-Seong;Kim, Jong-Sun;Lee, Jeong-Hwan;Jeong, Jong-Ok;Son, Moon;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.116-128
    • /
    • 2007
  • Detailed geological mapping, petrographic study, analyses of geochemistry and magnetic susceptibility, and K-Ar dating were carried out in order to determine the origin, age, and stratigraphic implications of granitic rock fragments in the pyroclastic rocks, SE Jinhae city, southern part of the Gyeongsang Basin. As a result, it was found that the area is composed of volcanics and tuffaceous sediments of the Yucheon Group, Bulguksa granites, pyroclastics bearing granitic rock fragments, $basalt{\sim}basaltic$ andesite, and rhyolite in ascending stratigraphic order. The granitic rock fragments in the pyroclastic rocks are divided into granodiorite and biotite granite, which have approximately the same characteristics as the granodiorite and the biotite granite of the Bulguksa granites, respectively, in and around the study area including color, grain size, mineral composition, texture (perthitic and micrographic textures), intensity of magnetic susceptibility (magnetite series), and geochemical features (calc-alkaline series and REE pattern). This leads to the conclusion that the rock fragments originated from the late Cretaceous Bulguksa granites abundantly distributed in and around the study area, but not from the basement rocks of the Yeongnam massif or the Jurassic granites. Based on relative and absolute ages of various rocks in the study area, the pyroclastics bearing granitic rock fragments are interpreted to have erupted between 52 and 16 Ma, i.e. during the Eocene and early Miocene. These results indicate that the various volcanisms, acidic to basic in composition, occurred after the intrusion of the Bulguksa granites, contrary to the general stratigraphy of the Gyeongsang Basin. Very detailed and cautious mapping together with relative and absolute age determinations are, thus, necessary in order to establish reliable stratigraphy of the Yucheon Group in other areas of the Gyeongsang Basin.

Petrology of the Syenites in Sancheong, Korea (경남 산청 지역의 섬장암에 관한 암석학적 연구)

  • Ok, Eun-Young;Kim, Jong-Sun;Lee, Sang-Won;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.25-54
    • /
    • 2015
  • Syenite is not a common rock, unlike granitic rocks formed the major component of the continental crust. The aim of this study is to decipher the occurrences and detailed descriptive characteristics of the syenite distributed in Sancheong area, and to investigate the petrogenesis of the syenitic magma based on geochemical study. The dominant minerals in syenite are alkali feldspar (usually orthoclase and rarely microcline), plagioclase, amphibole, biotite, and quartz. Syenites are found in a wide variety of colors. The anhedral hornblende and biotite filling the boundary of feldspar and quartz indicate that the hydrous minerals were crystallized lately, and that water was insufficient at the beginning of crystallization in magma. According to the analysis of mineral composition, amphibole in syenite is mostly ferro-edenite, and the pressure is calculated as 3.3~4.9 kb with 11.9~17.3 km of emplacement depth. Biotite and pyroxene are plotted in the region of annite and hedenbergite, respectively. Based on petrochemical studies of major elements, syenite belongs to alkaline series, metaluminous, and I-type. On the other hand, the variation patterns of trace and rare earth elements of syenite differ from the patterns of diorite and granite. In the geochemical characteristics, syenite is different from gabbro-diorite spatially adjacent to syenite, as well as granite. These results suggest that each rock has been generated from the different sources of magma. Additionally, based on the experimental data, the syenitic magma can be formed (1) by the partial melting at a high pressure and dry system, (2) when the initial crystallization minerals to be residue with migration of the residual melts separated from the ascending cotectic magma (3) when fluorine compositions to be plentiful in the protolith and/or at depth of the magma. Based on the petrographic characteristics of the syenite, Sancheong syenitic magma may have been formed by partial melting in a dry system.

The Characteristic of Mangerite and Gabbro in the Odaesan Area and its Meaning to the Triassic Tectonics of Korean Peninsula (오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체구조 해석에 대한 의미)

  • Kim, Tae-Sung;Oh, Chang-Whan;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-98
    • /
    • 2011
  • The igneous complex consisting of mangerite and gabbro in the Odaesan area, the eastem part of the Gyeonggi Massif, South Korea, intruded early Paleo-proterozoic migmatitic gneiss. The mangerite is composed of orthopyroxene, clinopyroxene, amphibole, biotite, plagioclase, pethitic K-feldspar, quartz. The gabbro has similar mineral assemblage but gabbro has minor amounts of amphibole and no perthitic K-feldspar. The gabbro occurs as enclave and irregular shaped body within the mangerite, and the boundary between the mangerite and gabbro is irregular. Leucocratic lenses with perthitic K-feldspar are included in the gabbro enclaves. These textures represent mixing of two different magmas in liquid state. SHRIMP U-Pb zircon age dating gave $234{\pm}1.2$ Ma and $231{\pm}1.3$ Ma for mangerite and gabbro, respectively. These ages are similar with the intrusion ages of post collision granitoids in the Hongseong (226~233 Ma) and Yangpyeong (227~231 Ma) areas in the Gyeonggi Massif. The mangerite and gabbro are high Ba-Sr granites, shoshonitic and formed in post collision tectonic setting. These rocks also show the characters of subduction-related igneous rock such as enrichment in LREE, LILE and negative Nb-Ta-P-Ti anomalies. These data represent that the mangerite and gabbro formed in the post collision tectonic setting by the partial melting of an enriched lithospheric mantle during subduction which occurred before collision. The heat for the partial melting was supplied by asthenospheric upwelling through the gab between continental and oceanic slabs formed by slab break-off after continental collision. The distribution of post-collisional igneous rocks (ca. 230 Ma) in the Gyeonggi Massif including Odaesan mangerite and gabbro strongly suggests that the tectonic boundary between the North and South China blocks in Korean peninsula passes the Hongseong area and futher exteneds into the area between the Yangpyeong-Odaesan line and Ogcheon metamorphic belt.

SHRIMP V-Pb Zircon Ages of the Granite Gneisses from the Pyeonghae Area of the northeastern Yeongnam Massif (Sobaeksan Massif) (영남(소백산)육괴 북동부 평해지역 화강편마암류의 SHRIMP U-Pb 저콘 연대)

  • Kim, Nam-Hoon;Song, Yong-Sun;Park, Kye-Hun;Lee, Ho-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.31-47
    • /
    • 2009
  • We performed petrological, geochemical, and geochronological study for the Pyeonghae granite gneiss and the Hada leuco-granite gneiss intruding the Paleoproterozoic meta-sedimentary rocks (pyeonghae formation and Wonnam formation) of the Pyeonghae area located in northeastem part of the Yeongnam (Sobaeksan) massif. The Pyeonghae granite gneiss generally has higher abundance of mafic minerals (biotite etc.), and posesses higher ${Fe_2}{O_3}^t$, MgO, CaO, $TiO_2$, $P_{2}O_{5}$ contents but lower $SiO_2$ and $K_{2}O$ contents than the Hada leuco-granite gneiss which tends to have slightly high $Al_{2}O_{3}$ and $Na_{2}O$ contents and slightly high larger negative Eu anomalies. However both gneisses reveal very similar REE concentrations and chondrite-normalized patterns and apparently show differentiation trend affected by crystallization of biotite, plagioclase, apatite and sphene. Their peraluminous and calc-alkaline chemistry suggests tectonic environment of volcanic arc. SHRIMP Zircon U-Pb age determinations yield upper intercept ages of $1990{\pm}23\;Ma$ ($2{\sigma}$) and $1939{\pm}41\;Ma$ ($2{\sigma}$), and weighted mean $^{207}Pb/^{206}Pb$ ages of $1982{\pm}6.3\;Ma$ ($2{\sigma}$) and $1959{\pm}28\;Ma$ ($2{\sigma}$) for the Pyeonghae granite gneiss and the Hada leuco-granite gneiss respectively, showing overlapping ages within the error. Our study suggests that the Precambrian granitoids in this area intruded contemporaneously with the Buncheon granite gneissin volcanic arc environment.

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF

A Study on Production Kiln Site Estimation, based on Historical Ceramic Characteristics and Scientific Analysis of the Celadons Excavated From the Beopcheon Temple Site and Son-gok 2-ri 4th Kiln Site (법천사지 청자와 손곡2리 4호 가마터 청자의 도자사적 성격과 과학적 분석을 통한 생산 가마터 추정 연구)

  • Lee, Byeong-hoon;Yun, Seok-in
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.3
    • /
    • pp.24-41
    • /
    • 2014
  • Since the celadons excavated from the Son-gok 2-ri 4th kiln site are located in the Beopcheon temple site and at close range, the similarity to the celadons excavated from the Beopcheon temple site is being raised. Thus, this study examined the correlation using a natural-scientific method. In this study, historical ceramic properties of total 19 celadons were examined and they were scientifically analyzed. First of all, according to the scientific analysis, chemical compositions of celadon clay showed a dispersed distribution at RO2 3.79-7.77mole and RO+R2O 0.33-0.49mole. When the microstructure was analyzed, most celadons excavated from the Beopcheon temple site, Wonju, which are estimated to be used in real life, had a favorable state, and some celadons from the Son-gok 2-ri 4th kiln site were found not to be glazed and sintered properly. When analyzing body crystalline phases of the celadons using the XRD method, quartz and mullite were extracted from all of the samples. And corundum was extracted from sg4 sample. Though firing temperature of each sample was different, they were mostly fired to temperatures between 1150 and $1200^{\circ}C$ and some of them experienced a low temperature of $1100^{\circ}C$ or a high temperature above $1200^{\circ}C$. Various chemical compositions and producing techniques were observed in the celadons from the Beopcheon temple site and Son-gok 2-ri 4th kiln site and it is hard to assure that the Son-gok 2-ri 4th kiln site was the production kiln site of the celadons used in the Beopcheon temple site. But according to the analysis of rare earth elements, some of the celadons from the Beopcheon temple site and Son-gok 2-ri 4th kiln site displayed a distribution pattern with certain regularity and this implies there is a possibility that the raw materials used in producing the ceramics might have come from the same origin. From the perspective of ceramic history, the celadons excavated from the Beopcheon temple site and Son-gok 2-ri 4th kiln site were produced using the same molding and sintering technique. Also, it is estimated that they were produced in the 12th or 13th century, judging from the overall shapes and patterns of the celadons.

A Scientific Study of Roof Tiles in Joseon Dynasty from Dongdaemoon Stadium (동대문운동장유적 출토 조선시대 기와의 특성 연구)

  • Chung, Kwang-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.160-173
    • /
    • 2012
  • Roofing tile research conducted in Korea so far is mostly related to studies on roofing tile patterns excavation report on the roof tile klin site in the aspects of archeology architecture and history of art. There have been continuous studies on kiln ground and manufacture techniques of roofing tiles. However it is difficult to find roofing tiles research based on scientific experiments. The research on this paper performs physical and chemical experimental study to understand order, manufacturing techniques and other characteristics of Chosun Dynasty roofing tiles excavated in Dongdaemun stadium. As for physical experimental study water absorption, specific gravity, whole-rock Magnetic susceptibility rate and Differential Thermal Analysis are conducted. As for chemical experimental study, neutron activation analysis(NAA), microstructure observation, X-ray diffractometry(XRD) analysis are conducted. Result of neutron activation analysis and statistical analysis on piece of roof tile 22 samples clearly show that the roofing tile samples are from different time line and places. It also shows different composition when compare average value of rare earth resources per findspots. It means roofing tiles were manufactured from clay mineral from several places. Close inspection using XRD and polarization microscope reveals that main components of roofing tiles are quartz and felspar. Mica and Illite are found partially. XRD analysis shows mullite mineral composition which occurs when roofing tile is calcined around $1000^{\circ}C$. Differential thermal analysis shows gradual exothermic peak near $900^{\circ}C$. Based on these results, it is assumed that roofing tile is made at $900{\sim}1000^{\circ}C$. result of XRD analysis shows mullite were made near $1000^{\circ}C$. in Differential Thermal Analysis shows gradual exothermic peak near $900^{\circ}C$. this results shows that roof tiles were made near 900~1000 near $1000^{\circ}C$ mean value of whole-rock Magnetic susceptibility rate. When performed comparative analysis using whole-rock Magnetic susceptibility rate average value, findspots provided no certain classification to arrange. Nonetheless low whole-rock Magnetic susceptibility rate 0.2~0.78(${\times}103$ SI unit) is found when roofing tile patterns are Pasangmun, Taesangmun, Eosangmun, Kyukjamun, Heongsunmun. Overall absorptivity is 14~21%. It is similar to 14~18% of roofing tile from Chosun Dynasty. There is only 1.4~2.5g/cm3 of roof tile sample specific gravity. The analysis finds no difference in specific gravity by findspots.

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea (충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구)

  • Ijeung Kim;Sang-Mo Koh;Otgon-Erdene Davaasuren;Gi Moon Ahn;Chul-Ho Heo;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2023
  • We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.