• Title/Summary/Keyword: 희토류 대체

Search Result 44, Processing Time 0.02 seconds

Recovery of Valuable Minerals from Sea Water by Membrane Separation and Adsorption Process: A Review (막 분리와 흡착 과정을 통한 해수로부터의 주요 광물 회수: 리뷰)

  • Jeon, Sungsu;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • Ever increasing global energy demand gives rise to uncontrollable environmental pollution. Demand on fossil fuel and consequent carbon emission leads to global warming and climate change. Nuclear energy is an alternative source to generate clean energy but mining of nuclear fuel is associated with harmful chemicals. Mining of valuable minerals from sea water by membrane separation process is a cost effective along with environmental friendly process. Separation and adsorption based mining of valuable minerals from sea water are another efficient process. Recovery of actinides from rare earth elements are very challenging and expensive process. Pressure driven membrane separation process is economically more viable along with environmental process. In this review membrane separation process are based on polyether sulfone, polyamide, polyimide, polyamidoxine and hybrid membranes. In case of adsorption process, mainly amidoxime kind of adsorbent are discussed.

Investigation of Pyroprocessing Concept and Its Applicability as an Alternative Technology for Conventional Fuel Cycle (고온전해분리 기술의 개요 및 기존 핵연료주기 대체 기술로서의 적합성 검토)

  • Yoo, Jae-Hyung;Lee, Byung-Jik;Lee, Han-Soo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.283-295
    • /
    • 2007
  • The technical feasibility of a pyroprocessing of PWR spent fuels to recover nuclear fuel materials, uranium and transuranic elements group(TRU), was examined in this study. Also its applicability as a new fuel cycle technology in terms of non-proliferation was investigated. First, various unit processes were combined to a pyroprocess. Then the flow aspects of such materials of issue as uranium, transuraniums, rare earth, noble metals and heat generating elements were examined on the flowsheet, which was obtained by the assumptions on the basis of various experimental results in this work or separation data collected from literatures. Consequently, the calculated results of the material balance for the whole process showed that uranium and TRU could be recovered as products by 98.0 % and 97.0 %, respectively, from a PWR spent fuel while removing the other elemental groups into radioactive wastes. On the one hand, the TRU product was found to emit a considerable amount of ${\gamma}$-ray as well as neutrons favorably contributing to the strategy of proliferation resistance.

  • PDF

Geochemical Variation of Hwangsan Volcanic Complex by Large Hydrothermal Alteration (대규모 열수변질작용에 따른 황산 화산암복합체의 지구화학적 변화특성)

  • Kim, Eui-Jun;Hong, Young-Kook;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.95-107
    • /
    • 2011
  • The Hwangsan volcanic rocks, hosting the Moisan epithermal Au-Ag deposit arc widely distributed throughout the Seongsan district, and associated with large hydrothermal alteration. They were analyzed as the Moisan and around voleanic rocks, and most of them show dacitic to rhyolitic compositions. Hydrothermal alteration related to epithermal system causes the host rocks to show the geochemical variation due to high mobility of alkali elements. These features can be applied for quantitative estimates of alteration intensity. Alteration intensity of volcanic rocks from the Moisan ranges from subtle to intense, based on AI vs. $Na_2O$ diagram. The pattern that ($CaO+Na_2O$) content decrease with increasing $K_2O$ content results from sericitic alteration, in which hydrothermal fluids continually provide $K^+$ into country rocks but remove $Ca^{2+}$ and $Na^{2+}$ of feldspars within country rocks. The decrease of ($CaO+Na_2O$) with decreasing $K_2O$ in some samples from the Moisan may be caused by advanced argillic alteration that all alkali elements are entirely removed from country rocks by acid hydrothermal fluids. Two alteration trends, based on Al and CCPI alteration indices suggest both sericitic alterations of feldsaprs to illite and sericite+chlorite$^{\circ}{\ae}$pyritc alteration of high Mg and Fe activities. Trace and Rare Earth Elements patterns show the similar geochemical variation related to hydrothermal alteration. Of LIL elements, strong depletion of $Sr^{2+}$, substituting for $Ca^{2+}$ in feldspars, appears to be resulted from removal of $Ca^{2+}$, during replacement of feldspars to alumino-silicates or phyllo silicates minerals by hydrothermal fluids. Relatively low total REEs contents (Moisan: 119-182 ppm; Seongsan: 111-209 ppm) and gently negative slopes suggest that significant mobility of LREEs appear to occur during hydrothermal alteration.

Petrology and Geochemistry of Jurassic Daejeon and Nonsan Granitoids in the Ogcheon Fold Belt, Korea (옥천(沃川) 변성대(變成帶)에 분포하는 쥬라기(紀) 대전(大田) 및 논산(論山) 화강암류(花崗岩類)의 암석지화학적(岩石地化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.179-195
    • /
    • 1984
  • The Jurassic Daejeon and Nonsan granitoids are "S-type" syntectonic calc-alkaline two-mica monzogranite and granodiorite, respectively. With evidences of high CaO, $Al_2O_3$, LIL/HFS elements, total REE, (Ce/Yb)N and initial ($^{87}Sr/^{88}Sr$) ratio, and no significant Eu anomaly, the primary magmas for the Daejeon and Nonsan granitic rocks are derived from partial melting of the Precambrian granulite (e.g. grey gneisses). But those Jurassic granitoids crystallised from different chemical characteristics of parental magmas which is mainly due to varying degree of partial melting of the granulite (crustal anatexis). The absence of significant anomalous Eu($Eu/Eu^*=O.82{\sim}1.00$) in the Daejeon and Nonsan granitoids could indicate that feldspars, mainly plagioclase, did not separate from the magmas. The parental hydrous magmas could not rise appreciably above their source region before crystallisation. The Jurassic granitoids may be resulted by closing-collision situation and belong to the Hercynotype (Pitcher 1979) such as compressive ductile regime of an intracontinental orogen.

  • PDF

Geochemical Studies of the Trace Element of the Basalt in the Kilauea, Hawaii (킬라우에아 현무암의 미량원소에 대한 지구화학적 연구)

  • Park, Byeong-Jun;Jang, Yun-Deuk;Kwon, Suk-Bom;Kim, Jeong-Jin
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.675-689
    • /
    • 2007
  • Kilauea volcano's summit area was formed by continuous ind/or sporadic eruption activities for several hundreds years. In this study, we mainly focused on the trace elements characteristics through systematic sample rocks erupted from 1790 to September of 1982. Under the microscope it can be observed some main minerals such as olivine, clinopyroxene. and plagioclase with minor opaque minerals including Cr-spinel and ilmenite. Zr, V, Y, Ti elements show incompatible activities with MgO while Ni, Cr, Co elements show highly compatible properties. Elements like as Ba, Rb, Th, Sr, Nd are highly incompatible to show positive trends with $K_2O$. In the REE diagram LREE is more enriched than HREE suggesting typical Oceanic Island Basalt(OIB) type. It can be suggested that Sr have an effect on the fractionation of plagioclase from the kink in the $K_2O$ variation diagram. Y/Ho ratio diagram shows there was no fluids effect in the historical Kilauea volcano but Zr/Hf ratio diagram shows a significant difference between Kilauea lavas and PuuOo lavas. There are distinctive changes of trace element contents showing in particular abrupt changes of temporal variations between 1924 and 1954. Moreover, PuuOo lavas which had been erupted since 1983 follow these decreasing trends of trace element variation. Therefore, it is strongly suggested that these abrupt changes of trace elements trends result from the huge collapse geological event which formed Halemaumau crater in 1924 causing contamination effects of crustal contents into magma chamber and from the changes of parental magma composition injected into Kilauea volcano's summit magma reservoir.

Genetic Consideration of Sericite Deposits Derived from Granitic Rocks in the Taebaegsan Region (태백산지역에 분포하는 화강암체 기원 견운모광상의 성인적 고찰)

  • Yoo, Jang-Han;Chi, Sei-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2008
  • Yeongweol sericite deposit of Gangwon Province is regarded as one of the sericite deposits derived from granitic rocks due to post-magmatic alkali metasomatism, and the other sericite deposit of the same origin is the Daehyun mine of Gyungbug Province. Sericite ores were originated from leucocratic granitic stocks of Cambrian-Triassic age which intruded the pegmatitic migmatite of the unknown age and granite of the Pre-cambrian age, respectivcly. Jangsan quartzite of the lowermost formations of the Paleozoic era, which played as the capping rock protected from the leakage of the hydrothermal solution. It is well known that those sericite deposits arc formed during formation of the geosyncline, and they are also situated in the margins of the Hambaeg Syncline. Leucocratic granites commonly contain pegmatites with tourmaline crystals, and are rich in potassium feldspars, and sodium plagioclase as well. Sericitized ores are mainly found as we go up to the higher elevations or to the margins of the stocks. And some of the Highest grade sericite ores show the monominerallic character composed of nearly pure sericite probably doc to the ultra greisenization. Chemical analysis shows higher $Na_{2}O$ and $K_{2}O$ contents $(2.00\sim7.03wt%)$ as the sericitizations arc preceded and they represent obvious greisenization. But low CaO contents $(0.05\sim4.51wt%)$ indicate that albitizations are so weak. Pyrophyllite of the Youngweol area is often accompanied by the sericite, indicating rather stronger thermal effect than the Daehyun mine. It is known that there are several Sn deposits originated from greisenization in the Taebaegsan region. And greisens are inclined to contain W, Mo and several REE's such as Be, Nb and Li, and so Taebaegsan region interbedded with lots of carbonate formations are still worthwhile to survey for those metallic deposits.

Petrology and Geochemistry of the Cretaceous Palgongsan Granite, Southern Korea (백악기(白堊紀) 팔공산(八公山) 화강암(花崗岩)의 암석학적(岩石學的) 및 지구화학적(地球化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.83-109
    • /
    • 1983
  • The Cretaceous Palgongsan granite is a typical, calc-alkaline, subsolvus monzogranite and shows characteristics of "I-type" granite by mineralogy and chemical composition. Many of the major and trace element characteristics of the Palgongsan granite are consistent with a relationship by fractional crystallisation to form a chemically zoned pattern. The granite show light REE enrichment with (Ce/Yb)N ratios of 5.78-9.50. All the REE patterns show Eu negative anomalies which become larger from the margin ($Eu/Eu^*=0.75$) to the core ($Eu/Eu^*=0.24$) of the pluton, mainly due to feldspar fractionation. Mineral geochemistry (alkali-feldspar, plagioclase & biotite) studies also show the zonal structure of the Palgongsan granite. The two-feldspar geothermometer shows that the temperature difference between the margin and the core part of the pluton is about $200^{\circ}C$ at various assumed pressures.

  • PDF

Chemical Stability Evaluation of Ceramic Materials for Liquid Cadmium Cathode (액체카드뮴음금용 세라믹 소재의 화학적 안정성 평가)

  • Ku, Kwang-Mo;Ryu, Hong-Youl;Kim, Seung-Hyun;Kim, Dae-Young;Hwang, Il-Soon;Sim, Jun-Bo;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • LCC (Liquid cadmium cathode) is used for electrowinning in pyroprocessing to recover uranium and transuranic elements simultaneously. It is one of the core technologies in pyroprocessing with higher proliferation resistance than a wet reprocessing because LCC-cell does not separate TRU from uranium. The crucible which holds the LCC is technically important because it should be nonconducting material to prevent deposition of metallic elements on the crucible outer surface. The chemical stability is also crucial factor to choose crucible material due to the strong reactivities of TRU and possible incorporation of Li metal during the operation. In this study, the chemical stabilities of four kinds of representative ceramic materials such as $Al_2O_3$, MgO, $Yl_2O_3$ and BeO were thermodynamically and experimentally evaluated at $500^{\circ}C$ with simulated LCC. The contact angle of LCC on ceramic materials was measured as function of time to predict chemical reactivity. $All_2O_3$ showed poorest chemical stability and the pores in BeO contributed to a decreases in contact angle. MgO and $Y_2O_3$ have superior chemical stability among the materials.

Magnetocrystalline Anisotropy of α''-Fe16N2 (α''-Fe16N2의 자기결정이방성)

  • Khan, Imran;Son, Jicheol;Hong, Jisang
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.115-118
    • /
    • 2016
  • We investigated the magnetocrystalline anisotropy of pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ by using full-potential linearized augmented plane wave method (FLAPW). A very high magnetic moment was obtained for Fe (4d) site due to the lattice expansion in the z-direction, while the magnetic moment of Fe (4e) and (8h) site were suppressed due to hybridization with neighboring N atom. The calculated spin magnetic moments for different Fe sites (4d, 4e and 8h) were in good agreement with previously reported values. Due to the tetragonal distortion, we found a very large uniaxial anisotropy constant of $0.58MJ/m^3$. Besides, a high value of magnetization of 1.76MA/m was obtained. In additon, the estimated coercive field and maximum energy product of 6.51 kOe and 71.7 MGOe were obtained for pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$. This may suggest that the ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ can be utilized for potential rare-earth free permanent magnet material.

Rare Earth Element Contents of the Ginsengs and their Soils, Keumsan area (금산 인삼과 토양의 희토류 원소 함량관계)

  • Song, Suck-Hwan;Min, Ell-Sik;Yoo, Sun-Kyun;Lee, Yong-Gyoo
    • Journal of Ginseng Research
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • Ginsengs(1-3 years old) from the Keumsan were analysed for the rare earth element(REE) contents and compared with their soils from the biotite granite(CR), phyllite(PH) and shale(SL) areas. In the soils, high REE contents and correlations were found in the SL. In the ginsengs, high element contents were shown in the SL. High correlations were found in the 3 year. In the upper parts, the 2 year of the GR was mainly high. Comparing with the same aged ginsengs, high elements were shown in the SL. Positive correlations were dominated and high correlations were shown in the 3 year ginsengs. In the root parts, the GR was high in the 2 year while the PH and SL were high in the 3 year. Comparing with the same ages, high elements were shown in the SL. High correlation relationships were found. Comparing between upper and root parts, the upper parts were mainly high, LREE showed big differences and relative ratios of the 2 year were mainly high. Comparing between soils and ginsengs, the soils were mainly high. Ratios between soils and root parts(soils/root parts) were higher than those of the upper parts. Ratios of the LREE showed big differences relative to those in the HREE and the ratios increased with ages. Overall results suggested that ginsengs of the SL were similar to those of soils and those of the PH showed big differences.